Dexmedetomidine pretreatment alleviates ropivacaine-induced neurotoxicity via the miR-10b-5p/BDNF axis

Xu P, Zhang S, Tan L, Wang L, Yang Z, Li J. Local Anesthetic Ropivacaine Exhibits Therapeutic Effects in Cancers. Front Oncol. 2022;12: 836882. https://doi.org/10.3389/fonc.2022.836882.

Article  PubMed  PubMed Central  Google Scholar 

Li M, Wan L, Mei W, Tian Y. Update on the clinical utility and practical use of ropivacaine in Chinese patients. Drug Des Devel Ther. 2014;8:1269–76. https://doi.org/10.2147/DDDT.S57258.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wen X, Liang H, Li H, Ou W, Wang HB, Liu H, et al. In vitro neurotoxicity by ropivacaine is reduced by silencing Cav3.3 T-type calcium subunits in neonatal rat sensory neurons. Artif Cells Nanomed Biotechnol. 2018;46:1617–24.

CAS  PubMed  Google Scholar 

Sun Z, Liu H, Guo Q, Xu X, Zhang Z, Wang N. In vivo and in vitro evidence of the neurotoxic effects of ropivacaine: the role of the Akt signaling pathway. Mol Med Rep. 2012;6:1455–9. https://doi.org/10.3892/mmr.2012.1115.

CAS  Article  PubMed  Google Scholar 

Sun ZH, Xu XP, Song ZB, Zhang Z, Wang N, Guo QL. Repeated intrathecal administration of ropivacaine causes neurotoxicity in rats. Anaesth Intensive Care. 2012;40:825–31. https://doi.org/10.1177/0310057X1204000427.

CAS  Article  PubMed  Google Scholar 

Luo Z, Zhang Z, Zhang F, Liu Y, Zhang Y, Sun X, et al. Ropivacaine mesylate exerts neurotoxicity via up-regulation of Fas/FasL expression in rat pheochromocytoma PC12 cells. Am J Transl Res. 2019;11:1626–34.

CAS  PubMed  PubMed Central  Google Scholar 

Verlinde M, Hollmann MW, Stevens MF, Hermanns H, Werdehausen R, Lirk P. Local Anesthetic-Induced Neurotoxicity. Int J Mol Sci. 2016;17:339. https://doi.org/10.3390/ijms17030339.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Weerink MAS, Struys M, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin Pharmacokinet. 2017;56:893–913. https://doi.org/10.1007/s40262-017-0507-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, He J, Yu N, Jia C, Wang S. Mechanisms of Dexmedetomidine in Neuropathic Pain. Front Neurosci. 2020;14:330. https://doi.org/10.3389/fnins.2020.00330.

Article  PubMed  PubMed Central  Google Scholar 

Kirksey MA, Haskins SC, Cheng J, Liu SS. Local Anesthetic Peripheral Nerve Block Adjuvants for Prolongation of Analgesia: A Systematic Qualitative Review. PLoS ONE. 2015;10: e0137312. https://doi.org/10.1371/journal.pone.0137312.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Unchiti K, Leurcharusmee P, Samerchua A, Pipanmekaporn T, Chattipakorn N, Chattipakorn SC. The potential role of dexmedetomidine on neuroprotection and its possible mechanisms: Evidence from in vitro and in vivo studies. Eur J Neurosci. 2021;54:7006–47. https://doi.org/10.1111/ejn.15474.

CAS  Article  PubMed  Google Scholar 

Xue X, Fan J, Ma X, Liu Y, Han X, Leng Y, et al. Effects of local dexmedetomidine administration on the neurotoxicity of ropivacaine for sciatic nerve block in rats. Mol Med Rep. 2020;22:4360–6. https://doi.org/10.3892/mmr.2020.11514.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xue Y, Xu T, Jiang W. Dexmedetomidine protects PC12 cells from ropivacaine injury through miR-381/LRRC4 /SDF-1/CXCR4 signaling pathway. Regen Ther. 2020;14:322–9. https://doi.org/10.1016/j.reth.2020.03.001.

Article  PubMed  PubMed Central  Google Scholar 

Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141:1202–7. https://doi.org/10.1016/j.jaci.2017.08.034.

CAS  Article  PubMed  Google Scholar 

Twaroski D, Bosnjak ZJ, Bai X. MicroRNAs: New Players in Anesthetic-Induced Developmental Neurotoxicity. Pharm Anal Acta. 2015;6:357. https://doi.org/10.4172/2153-2435.1000357.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bahmad HF, Darwish B, Dargham KB, Machmouchi R, Dargham BB, Osman M, et al. Role of MicroRNAs in Anesthesia-Induced Neurotoxicity in Animal Models and Neuronal Cultures: a Systematic Review. Neurotox Res. 2020;37:479–90. https://doi.org/10.1007/s12640-019-00135-6.

Article  PubMed  Google Scholar 

Yang X, Chen H, Chen Y, Birnbaum Y, Liang R, Ye Y, et al. Circulating miRNA Expression Profiling and Target Prediction in Patients Receiving Dexmedetomidine. Cell Physiol Biochem. 2018;50:552–68. https://doi.org/10.1159/000494168.

CAS  Article  PubMed  Google Scholar 

Ke X, Huang Y, Fu Q, Lane RH, Majnik A. Adverse Maternal Environment Alters MicroRNA-10b-5p Expression and Its Epigenetic Profile Concurrently with Impaired Hippocampal Neurogenesis in Male Mouse Hippocampus. Dev Neurosci. 2021;43:95–105. https://doi.org/10.1159/000515750.

CAS  Article  PubMed  Google Scholar 

Ruan Z, Li Y, He R, Li X. Inhibition of microRNA-10b-5p up-regulates HOXD10 to attenuate Alzheimer’s disease in rats via the Rho/ROCK signalling pathway. J Drug Target. 2021;29:531–40. https://doi.org/10.1080/1061186X.2020.1864739.

CAS  Article  PubMed  Google Scholar 

Wang L, Liu W, Zhang Y, Hu Z, Guo H, Lv J, et al. Dexmedetomidine had neuroprotective effects on hippocampal neuronal cells via targeting lncRNA SHNG16 mediated microRNA-10b-5p/BDNF axis. Mol Cell Biochem. 2020;469:41–51. https://doi.org/10.1007/s11010-020-03726-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci. 2020;21:7777. https://doi.org/10.3390/ijms21207777.

CAS  Article  PubMed Central  Google Scholar 

Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220:223–50. https://doi.org/10.1007/978-3-642-45106-5_9.

CAS  Article  PubMed  Google Scholar 

Liu L, Liu M, Zhao W, Zhao YL, Wang Y. Tetrahydropalmatine Regulates BDNF through TrkB/CAM Interaction to Alleviate the Neurotoxicity Induced by Methamphetamine. ACS Chem Neurosci. 2021;12:3373–86. https://doi.org/10.1021/acschemneuro.1c00373.

CAS  Article  PubMed  Google Scholar 

Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4: e05005. https://doi.org/10.7554/eLife.05005.

Article  PubMed Central  Google Scholar 

Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–31. https://doi.org/10.1093/nar/gkz757.

CAS  Article  PubMed  Google Scholar 

Cai L, Li WT, Zhang LL, Lu XQ, Chen M, Liu Y. Long noncoding RNA GAS5 enhanced by curcumin relieves poststroke depression by targeting miR-10b/BDNF in rats. J Biol Regul Homeost Agents. 2020;34:815–23. https://doi.org/10.23812/20-113-A-25.

CAS  Article  PubMed  Google Scholar 

Tang X, Zhao Y, Zhou Z, Yan J, Zhou B, Chi X, et al. Resveratrol Mitigates Sevoflurane-Induced Neurotoxicity by the SIRT1-Dependent Regulation of BDNF Expression in Developing Mice. Oxid Med Cell Longev. 2020;2020:9018624. https://doi.org/10.1155/2020/9018624.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kaur S, Attri JP, Kaur G, Singh TP. Comparative evaluation of ropivacaine versus dexmedetomidine and ropivacaine in epidural anesthesia in lower limb orthopedic surgeries. Saudi J Anaesth. 2014;8:463–9. https://doi.org/10.4103/1658-354X.140838.

Article  PubMed  PubMed Central  Google Scholar 

Abdallah FW, Brull R. Facilitatory effects of perineural dexmedetomidine on neuraxial and peripheral nerve block: a systematic review and meta-analysis. Br J Anaesth. 2013;110:915–25. https://doi.org/10.1093/bja/aet066.

CAS  Article  PubMed  Google Scholar 

Liu Y, Zhang H, Zhang W. Effect of Dexmedetomidine Combined with Ropivacaine on Cognitive Dysfunction and Inflammatory Response in Patients Undergoing Craniocerebral Surgery. Biomed Res Int. 2021;2021:4968300. https://doi.org/10.1155/2021/4968300.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kimura Y, Kamada Y, Kimura A, Orimo K. Ropivacaine-induced toxicity with overdose suspected after axillary brachial plexus block. J Anesth. 2007;21:413–6. https://doi.org/10.1007/s00540-007-0518-x.

Article  PubMed  Google Scholar 

Zou Y, He X, Peng QY, Guo QL. Inhibition of CD38/Cyclic ADP-ribose Pathway Protects Rats against Ropivacaine-induced Convulsion. Chin Med J (Engl). 2017;130:2354–60. https://doi.org/10.4103/0366-6999.215333.

CAS  Article  Google Scholar 

Guan F, Zhou X, Li P, Wang Y, Liu M, Li F, et al. MG53 attenuates lipopolysaccharide-induced neurotoxicity and neuroinflammation via inhibiting TLR4/NF-kappaB pathway in vitro and in vivo. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95: 109684. https://doi.org/10.1016/j.pnpbp.2019.109684.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Malet A, Faure MO, Deletage N, Pereira B, Haas J, Lambert G. The comparative cytotoxic effects of different local anesthetics on a human neuroblastoma cell line. Anesth Analg. 2015;120:589–96. https://doi.org/10.1213/ANE.0000000000000562.

CAS  Article  PubMed  Google Scholar 

Wang S, Lin Q, Wang Z, Pan X. Ropivacaine induces neurotoxicity by activating MAPK/p38 signal to upregulate Fas expression in neurogliocyte. Neurosci Lett. 2019;706:7–11. https://doi.org/10.1016/j.neulet.2019.04.048.

留言 (0)

沒有登入
gif