Ubiquitous toxicity of Mercuric Chloride in target tissues and organs: Impact of Ubidecarenone and liposomal-Ubidecarenone STAT 5A/ PTEN /PI3K/AKT signaling pathways

ElsevierVolume 74, December 2022, 127058Journal of Trace Elements in Medicine and BiologyAbstractBackground

Mercuric chloride (HgCl3) is categorized as class II B hazardous metal that is present in many occupational and environmental conditions. In the meantime, Hg exists in the environment in such an abundant manner, it is virtually impossible for humans to avoid exposure to different forms of Hg. In addition to environmental exposure, individuals may be exposed to Hg from dental amalgams, medicinal treatments and dietary sources. Nevertheless, Liposomal drug delivery system is a promising era in the field of Nano-medicine and have the advantageous of increasing drug bioavailability and retention phenomena in addition to targeting organ for all mentioned the present study was designed to investigate the hypothesis that messenger RNA gene expression of Signal transducer and activator of transcription- 5 A (STAT-5A), Phosphatase and tensin homolog (PTEN), phosphoinositol kinase (PI3K) and alpha serine/threonine-protein kinase (AKT) can trigger HgCl3 induced nephrotoxicity post Ubidecarenone and liposomal Ubidecarenone therapy.

Methods

HgCl3 toxicity was induced in rats via a dose of 5 mg/kg BW for one week followed by Ubidecarenone and liposomal Ubidecarenone therapy in a dose of 10 & 3 mg/kg BW for one month, respectively. Then kidney function tests, Glutathione and gene expression for PI3K, AKT, PTEN and STAT-5A was investigated.

Results

HgCl3 intoxication significantly up regulated PI3K, AKT, PTEN and STAT-5A signaling pathways meanwhile, Ubidecarenone and liposomal- Ubidecarenone treatment significantly reduced PI3K, AKT, PTEN and STAT-5A gene expression post HgCl3 intoxication with the liposomal regimen revealing the most significant impact. Furthermore, renal toxicity was confirmed via monitoring urea and creatinine which were modulated post Ubidecarenone and liposomal-Ubidecarenone treatment. Wide evidence declared that mercuric S-conjugates of small endogenous thiols (such as Hcy, NAC and Cys) are probably the main transportable forms of Hg2+ to the kidneys thus reduced glutathione was investigated which reflected a significant down regulation post Hgcl3 toxicity.

Conclusion

liposomal drug delivery system including liposomal-Ubidecarenone can be considered as a prospective candidate for treating HgCl3 renal toxicity via modulating STAT-5A, PTEN, PI3K and AKT signaling pathways and via increasing retention time, bioavailability, shielding from macrophage recognition and targeting organs.

Keywords

HgCl3

Ubidecarenone

Liposomal-Ubidecarenone

STAT-5A

PTEN

PI3K

AKT

View full text

© 2022 Published by Elsevier GmbH.

留言 (0)

沒有登入
gif