The potential of CRISPR-Cas9 prime editing for cardiovascular disease research and therapy

Purpose of review 

The ability to edit any genomic sequence has led to a better understanding of gene function and holds promise for the development of therapies for genetic diseases. This review describes prime editing - the latest CRISPR-Cas9 genome editing technology. Prime editing enables precise and accurate genome editing in terminally differentiated, postmitotic cells like cardiomyocytes, paving the way for therapeutic applications for genetic cardiomyopathies.

Recent findings 

Prime editing has been used to precisely insert up to 40 bases, create deletions up to 80 base pairs, and can perform all 12 possible transition and transversion base mutations with lower indels and off-target effects than other genome editing methods. The development of several software tools has simplified the experimental design and led to increased efficiency of the process. Improvements in methods for in-vivo delivery of the prime editing components should enable this technology to be used to edit the genome in patients.

Summary 

Prime editing has the potential to revolutionize the future of biomedical research and transform cardiovascular medicine. Improved understanding of the prime editing process and developments in agent design, efficacy and delivery will benefit scientists and patients and could be an effective way to cure cardiovascular diseases.

留言 (0)

沒有登入
gif