Three decades of gait index development: A comparative review of clinical and research gait indices

del Pilar Duque Orozco M. Abousamra O. Church C. Lennon N. Henley J. Rogers K.J. Sees J.P. Connor J. Miller F.

Reliability and validity of Edinburgh visual gait score as an evaluation tool for children with cerebral palsy.

Gait Posture. 49: 14-18https://doi.org/10.1016/j.gaitpost.2016.06.017Ambrósio J.A. Tavares da Silva M.

A Biomechanical Multibody Model with a Detailed Locomotion Muscle Apparatus.

Adv. Comput. multibody Syst. 155–184Andriacchi T.P. Alexander E.J.

Studies of human locomotion: Past, present and future.

J. Biomech. 33: 1217-1224https://doi.org/10.1016/S0021-9290(00)00061-0Araújo P.A. Kirkwood R.N. Figueiredo E.M.

Validity and intra-and inter-rater reliability of the Observational Gait Scale for children with spastic cerebral palsy.

Rev. Bras. Fis. 13: 267-273Aroojis A. Sagade B. Chand S.

Usability and Reliability of the Edinburgh Visual Gait Score in Children with Spastic Cerebral Palsy Using Smartphone Slow-Motion Video Technology and a Motion Analysis Application: A Pilot Study.

Indian J. Orthop. 1–8https://doi.org/10.1007/s43465-020-00332-yAssi A. Ghanem I. Lavaste F. Skalli W.

Gait analysis in children and uncertainty assessment for Davis protocol and Gillette Gait Index.

Gait Posture. 30: 22-26Baker R. McGinley J.L. Schwartz M.H. Beynon S. Rozumalski A. Graham H.K. Tirosh O.

The gait profile score and movement analysis profile.

Gait Posture. 30: 265-269Baker R. McGinley J.L. Schwartz M. Thomason P. Rodda J. Graham H.K.

The minimal clinically important difference for the Gait Profile Score.

Gait Posture. 35: 612-615Balasubramanian C.K. Clark D.J. Gouelle A.

Validity of the Gait Variability Index in older adults: Effect of aging and mobility impairments.

Gait Posture. 41: 941-946Barton G. Lisboa P. Lees A. Attfield S.

Gait quality assessment using self-organising artificial neural networks.

Gait Posture. 25: 374-379https://doi.org/10.1016/j.gaitpost.2006.05.003Barton G.J. Hawken M.B. Scott M.A. Schwartz M.H.

Movement Deviation Profile: A measure of distance from normality using a self-organizing neural network.

Hum. Mov. Sci. 31: 284-294Barton G.J. Hawkes D.H. Alizadehkhaiyat O. Howard A.J. Roebuck M.M. Fisher A.C. Frostick S.P. Robinson M.A. Hawken M.B.

Correlation of the movement deviation profile of shoulder muscle EMG with measures of shoulder function.

Gait Posture. 38: S28https://doi.org/10.1016/j.gaitpost.2013.07.059Barton G.J. Hawken M.B. Holmes G. Schwartz M.H.

A gait index may underestimate changes of gait: a comparison of the Movement Deviation Profile and the Gait Deviation Index.

Comput. Methods Biomech. Biomed. Engin. 18: 57-63Barton G.J. King S.L. Robinson M.A. Hawken M.B. Ranganath L.R.

Age-related deviation of gait from normality in alkaptonuria, in.

JIMD Reports. 24 (): 39-44Barton G.J. Hawken M.B. Scott M.A. Schwartz M.H.

Leaving hip rotation out of a conventional 3D gait model improves discrimination of pathological gait in cerebral palsy: A novel neural network analysis.

Gait Posture. 70: 48-52Bella G.P. Rodrigues N.B.B. Valenciano P.J. Silva L.M.A.E. Souza R.C.T.

Correlation among the visual gait assessment scale, Edinburgh visual gait scale and observational gait scale in children with spastic diplegic cerebral palsy.

Rev. Bras. Fis. 16: 134-140Bervet K. Bessette M. Godet L. Crétual A.

KeR-EGI, a new index of gait quantification based on electromyography.

J. Electromyogr. Kinesiol. 23: 930-937Beynon S. McGinley J.L. Dobson F. Baker R.

Correlations of the gait profile score and the movement analysis profile relative to clinical judgments.

Gait Posture. 32: 129-132Bigoni M. Cimolin V. Vismara L. Tarantino A. Clerici D. Baudo S. Galli M. Mauro A.

Relationship between gait profile score and clinical assessments of gait in post-stroke patients.

J. Rehabil. Med. 0https://doi.org/10.2340/16501977-2809

Neural networks for pattern recognition.

Oxford university press, Bonnefoy-Mazure A. Sagawa Jr., Y. Lascombes P. De Coulon G. Armand S.

Identification of gait patterns in individuals with cerebral palsy using multiple correspondence analysis.

Res. Dev. Disabil. 34: 2684-2693Bonnefoy-Mazure A. De Coulon G. Armand S.

Self-perceived gait quality in young adults with cerebral palsy.

Dev. Med. Child Neurol. 62: 868-873https://doi.org/10.1111/dmcn.14504Borel S. Schneider P. Newman C.J.

Video analysis software increases the interrater reliability of video gait assessments in children with cerebral palsy.

Gait Posture. https://doi.org/10.1016/j.gaitpost.2011.02.012

Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy.

Eur. J. Neurol. 6: s23-s35Boyd R.N. Graham J.E.A. Nattrass G.R. Graham H.K.

Medium-term response characterisation and risk factor analysis of botulinum toxin type A in the management of spasticity in children with cerebral palsy.

Eur. J. Neurol. 6: s37-s45

The impact of centre of pressure error on predicted joint kinetics during cerebral palsy and typically developed gait: A clinical perspective.

J. Biomech. 92: 155-161https://doi.org/10.1016/j.jbiomech.2019.05.034

Centre of pressure error with increasing gait velocity: The clinical impact on predicted inverse dynamics during gait in children with typical development.

Gait Posture. 82: 96-99https://doi.org/10.1016/j.gaitpost.2020.08.127Broström E.W. Esbjörnsson A.C. von Heideken J. Larsson P. Wretenberg P. Iversen M.

Change in Gait Deviation Index after anti-tumour necrosis factor-α treatment in individuals with rheumatoid arthritis: a pilot study.

Scand. J. Rheumatol. 42: 356-361Brown C.R. Hillman S.J. Richardson A.M. Herman J.L. Robb J.E.

Reliability and validity of the Visual Gait Assessment Scale for children with hemiplegic cerebral palsy when used by experienced and inexperienced observers.

Gait Posture. 27: 648-652

Toddle temporal-spatial deviation index: Assessment of pediatric gait.

Gait Posture. 49: 226-231https://doi.org/10.1016/j.gaitpost.2016.06.040Cahill-Rowley K. Schadl K. Vassar R. Yeom K. Stevenson D.K. Rose J.

Prediction of gait impairment in toddlers born preterm from near-term brain microstructure assessed with DTI, using exhaustive feature selection and cross-validation.

Front. Hum. Neurosci. 13: 305Caldas R. Mundt M. Potthast W. de Lima Buarque Neto F. Markert B.

A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.

Gait Posture. https://doi.org/10.1016/j.gaitpost.2017.06.019Cansel A.J.M. Stevens J. Bijnens W. Witlox A.M. Meijer K.

Hallux rigidus affects lower limb kinematics assessed with the Gait Profile Score.

Gait Posture. 84: 273-279https://doi.org/10.1016/j.gaitpost.2020.12.017Carse B. Scott H. Brady L. Colvin J.

A characterisation of established unilateral transfemoral amputee gait using 3D kinematics, kinetics and oxygen consumption measures.

Gait Posture. 75: 98-104https://doi.org/10.1016/j.gaitpost.2019.09.029Celletti C. Galli M. Cimolin V. Castori M. Tenore N. Albertini G. Camerota F.

Use of the Gait Profile Score for the evaluation of patients with joint hypermobility syndrome/Ehlers–Danlos syndrome hypermobility type.

Res. Dev. Disabil. 34: 4280-4285de Souza M.A. Cezarani A. Lizzi E.A. Da S. Davoli G.B. De Q. Mattiello S.M. Jones R. Mattiello-Sverzut A.C.

The use of the gait profile score and gait variable score in individuals with Duchenne Muscular Dystrophy.

J. Biomech. 98109485https://doi.org/10.1016/j.jbiomech.2019.109485

A review of analytical techniques for gait data. Part 2: neural network and wavelet methods.

Gait Posture. 13: 102-120Chester V.L. Tingley M. Biden E.N.

An extended index to quantify normality of gait in children.

Gait Posture. 25: 549-554Chester V.L. Tingley M. Biden E.N.

Comparison of two normative paediatric gait databases.

Dyn. Med. 6: 8Choi S.J. Chung C.Y. Lee K.M. Kwon D.G. Lee S.H. Park M.S.

Validity of gait parameters for hip flexor contracture in patients with cerebral palsy.

J. Neuroeng. Rehabil. 8: 4Choisne J. Fourrier N. Handsfield G. Signal N. Taylor D. Wilson N. Stott S. Besier T.F.

An Unsupervised Data-Driven Model to Classify Gait Patterns in Children with Cerebral Palsy.

J. Clin. Med. 9: 1432https://doi.org/10.3390/jcm9051432

Summary measures for clinical gait analysis: a literature review.

Gait Posture. 39: 1005-1010Cimolin V. Galli M. Vimercati S.L. Albertini G.

Use of the Gait Deviation Index for the assessment of gastrocnemius fascia lengthening in children with Cerebral Palsy.

Res. Dev. Disabil. 32: 377-381Cimolin V. Condoluci C. Costici P.F. Galli M.

A proposal for a kinetic summary measure: the Gait Kinetic Index.

Comput. Methods Biomech. Biomed. Engin. 22: 94-99Coghe G. Pau M. Mamusa E. Pisano C. Corona F. Pilloni G. Porta M. Marrosu G. Vannelli A. Frau J. Lorefice L. Fenu G. Marrosu M.G. Cocco E.

Quantifying gait impairment in individuals affected by Charcot-Marie-Tooth disease: the usefulness of gait profile score and gait variable score.

Disabil. Rehabil. 42: 737-742https://doi.org/10.1080/09638288.2018.1506946Correa K.P. Devetak G.F. Martello S.K. de Almeida J.C. Pauleto A.C. Manffra E.F.

Reliability and Minimum Detectable Change of the Gait Deviation Index (GDI) in post-stroke patients.

Gait Posture. 53: 29-34https://doi.org/10.1016/j.gaitpost.2016.12.012Cretual A. Bervet K. Ballaz L.

Gillette gait index in adults.

Gait Posture. 32: 307-310Daly J.J. Nethery J. McCabe J.P. Brenner I. Rogers J. Gansen J. Butler K. Burdsall R. Roenigk K. Holcomb J.

Development and testing of the Gait Assessment and Intervention Tool (GAIT): a measure of coordinated gait components.

J. Neurosci. Methods. 178: 334-339Danino B. Erel S. Kfir M. Khamis S. Batt R. Hemo Y. Wientroub S. Hayek S.

Are gait indices sensitive enough to reflect the effect of ankle foot orthosis on gait impairment in cerebral palsy diplegic patients?.

J. Pediatr. Orthop. 36: 294-298Deluzio K.J. Astephen J.L.

Biomechanical features of gait waveform data associated with knee osteoarthritis. An application of principal component analysis.

Gait Posture. 25: 86-93https://doi.org/10.1016/j.gaitpost.2006.01.007

Validation of a visual gait assessment scale for children with hemiplegic cerebral palsy.

Gait Posture. 23: 78-82https://doi.org/10.1016/j.gaitpost.2004.12.002Duque K.R. Marsili L. Sturchio A. Mahajan A. Merola A. Espay A.J. Kauffman M.A.

Progressive Ataxia with Hemiplegic Migraines: a Phenotype of CACNA1A Missense Mutations, Not CAG Repeat Expansions.

Cerebellum. 20: 134-139https://doi.org/10.1007/s12311-020-01185-9Dürregger C. Adamer K.A. Pirchl M. Fischer M.J.

Inter-rater reliability of a newly developed gait analysis and motion score.

J. Orthop. Trauma Rehabil. ()https://doi.org/10.1177/2210491720967366Esbjörnsson A.C. Rozumalski A. Iversen M.D. Schwartz M.H. Wretenberg P. Broström E.W.

Quantifying gait deviations in individuals with rheumatoid arthritis using the Gait Deviation Index.

Scand. J. Rheumatol. 43: 124-131Ferreira L.A.B. Cimolin V. Costici P.F. Albertini G. Oliveira C.S. Galli M.

Effects of gastrocnemius fascia lengthening on gait pattern in children with cerebral palsy using the gait profile score.

Res. Dev. Disabil. 35: 1137-1143Ferreira C.L. Barton G. Borges L.D. dos Anjos Rabelo N.D. Politti F. Lucareli P.R.G.

Step down tests are the tasks that most differentiate the kinematics of women with patellofemoral pain compared to asymptomatic controls.

Gait Posture. 72: 129-134Flett P.J. Stern L.M. Waddy H. Connell T.M. Seeger J.D. Gibson S.K.

Botulinum toxin A versus fixed cast stretching for dynamic calf tightness in cerebral palsy.

J. Paediatr. Child Health. 35: 71-77

Multichannel SEMG in clinical gait analysis: A review and state-of-the-art.

Clin. Biomech. 24: 236-245https://doi.org/10.1016/j.clinbiomech.2008.07.012Galli M. Cimolin V. De Pandis M.F. Schwartz M.H. Albertini G.

Use of the Gait Deviation index for the evaluation of patients with Parkinson’s disease.

J. Mot. Behav. 44: 161-167Galli M. Ferrario D. Patti P. Freedland R. Cimolin V. Gavin M. Velinov M.T. Heaney G. Brown W.T. Albertini G.

The use of 3d motion analysis in a patient with an atypical juvenile neuronal ceroid lipofuscinoses phenotype with CLN1 mutation and deficient PPT activity.

J. Dev. Phys. Disabil. 24: 155-165Galli M. Cimolin V. De Pandis M.F. Le Pera D. Sova I. Albertini G. Stocchi F. Franceschini M.

Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: a kinematic evaluation with gait profile score.

Funct. Neurol. 31: 163Givon U. Zeilig G. Achiron A.

Gait analysis in multiple sclerosis: characterization of temporal–spatial parameters using GAITRite functional ambulation system.

Gait Posture. 29: 138-142Gor-García-Fogeda M.D. Cano De La Cuerda R. Carratalá Tejada M. Alguacil-Diego I.M. Molina-Rueda F.

Observational gait assessments in people with neurological disorders: A systematic review.

Arch. Phys. Med. Rehabil. 97: 131-140https://doi.org/10.1016/j.apmr.2015.07.018Gor-García-Fogeda M.D. Cano-de-la-Cuerda R. Daly J.J. Molina-Rueda F.

Construct Validity of the Gait Assessment and Intervention Tool (GAIT) in People With Multiple Sclerosis.

PM R. 13: 307-313https://doi.org/10.1002/pmrj.12423Gor-García-Fogeda M.D. Tomé-Redondo S. Simón-Hidalgo C. Daly J.J. Molina-Rueda F. Cano-de-la-Cuerda R.

Reliability and Minimal Detectable Change in the Gait Assessment and Intervention Tool in Patients With Multiple Sclerosis.

PM R. 12: 685-691https://doi.org/10.1002/pmrj.12264Gouelle A. Mégrot F. Presedo A. Penneçot G.-F. Yelnik A.

Validity of Functional Ambulation Performance Score for the evaluation of spatiotemporal parameters of children’s gait.

J. Mot. Behav. 43: 95-100Gouelle A. Mégrot F. Presedo A. Husson I. Yelnik A. Penneçot G.-F.

The gait variability index: a new way to quantify fluctuation magnitude of spatiotemporal parameters during gait.

Gait Posture. 38: 461-465Gouelle A. Rennie L. Clark D.J. Mégrot F. Balasubramanian C.K.

Addressing limitations of the gait variability index to enhance its applicability: The enhanced GVI (EGVI).

PLoS One. 13e0198267https://doi.org/10.1371/journal.pone.0198267Gretz H.R. Doering L.L. Quinn J. Raftopoulos M. Nelson A.J. Zwick D.E.

Functional ambulation performance testing of adults with Down syndrome.

NeuroRehabilitation. 11: 211-225Grunt S. van Kampen P.J. van der Krogt M.M. Brehm M.A. Doorenbosch C.A.M. Becher J.G.

Reproducibility and validity of video screen measurements of gait in children with spastic cerebral palsy.

Gait Posture. 31: 489-494https://doi.org/10.1016/j.gaitpost.2010.02.006

Responsiveness of Edinburgh Visual Gait Score to orthopedic surgical intervention of the lower limbs in children with cerebral palsy.

Am. J. Phys. Med. Rehabil. 91: 761-767

Application of the Gait Deviation Index in the analysis of post-stroke hemiparetic gait.

J. Biomech. 99109575https://doi.org/10.1016/j.jbiomech.2019.109575Guzik A. Drużbicki M. Przysada G. Wolan-Nieroda A. Szczepanik M. Bazarnik-Mucha K. Kwolek A.

Validity of the gait variability index for individuals after a stroke in a chronic stage of recovery.

Gait Posture. 68: 63-67https://doi.org/10.1016/j.gaitpost.2018.11.014Guzik A. Drużbicki M. Perenc L. Podgórska-Bednarz J.

Can an Observational Gait Scale Produce a Result Consistent with Symmetry Indexes Obtained from 3-Dimensional Gait Analysis?: A Concurrent Validity Study.

J. Clin. Med. 9: 926https://doi.org/10.3390/jcm9040926Haddas R. Boah A. Block A.

Fear-avoidance and Patients’ Reported Outcomes are Strongly Correlated With Biomechanical Gait Parameters in Cervical Spondylotic Myelopathy Patients.

Clin. Spine Surg. 34: E289-E294https://doi.org/10.1097/BSD.0000000000001111

Video gait analysis for ambulatory children with cerebral palsy: Why, when, where and how!.

Gait Posture. 33: 501-503https://doi.org/10.1016/j.gaitpost.2010.11.025

Measures of adult general performance tests: The Berg Balance Scale, Dynamic Gait Index (DGI), Gait Velocity, Physical Performance Test (PPT), Timed Chair Stand Test, Timed Up and Go, and Tinetti Performance-Oriented Mobility Assessment (POMA).

Arthritis Rheum. 49: S28-S42https://doi.org/10.1002/art.11411Héliot R. Azevedo-Coste C. Schwirtlich L. Espiau B.

Gait spectral index (GSI): a new quantification method for assessing human gait.

Health (Irvine. Calif). 2: 38Hermens H.J. Freriks B. Merletti R. Stegeman D. Blok J. Rau G. Disselhorst-Klug C. Hägg G.

European recommendations for surface electromyography.

Roessingh Res. Dev. 8: 13-54Hochsprung A. Granja Domínguez A. Magni E. Escudero Uribe S. Moreno García A.

Effect of visual biofeedback cycling training on gait in patients with multiple sclerosis.

Neurol. English Ed. 35: 89-95https://doi.org/10.1016/j.nrleng.2017.07.001Hui D. Murgai A.A. Gilmore G. Mohideen S.I. Parrent A.G. Jog M.S.

Assessing the effect of current steering on the total electrical energy delivered and ambulation in Parkinson’s disease.

Sci. Rep. 10: 1-11Ito T. Noritake K. Sugiura Hiroshi Kamiya Y. Tomita H. Ito Y. Sugiura Hideshi Ochi N. Yoshihashi Y.

Association between Gait Deviation Index and Physical Function in Children with Bilateral Spastic Cerebral Palsy: A Cross-Sectional Study.

J. Clin. Med. 9: 28https://doi.org/10.3390/jcm9010028Ito Y. Ito T. Kurahashi N. Ochi N. Noritake K. Sugiura H. Mizuno S. Kidokoro H. Natsume J. Nakamura M.

Gait characteristics of children with Williams syndrome with impaired visuospatial recognition: a three-dimensional gait analysis study.

Exp. Brain Res. 238: 2887-2895https://doi.org/10.1007/s00221-020-05946-0Iwasaki T. Okamoto S. Akiyama Y. Yamada Y.

Generalized principal motion analysis: Classification of sit-to-stand motions.

in: 2019 IEEE 8th Global Conference on Consumer Electronics, GCCE 2019. Institute of Electrical and Electronics Engineers Inc.: 653-655https://doi.org/10.1109/GCCE46687.2019.9015482Iwasaki T. Okamoto S. Akiyama Y. Yamada Y.

Principal motion ellipsoids: Gait variability index based on principal motion analysis.

in: Proceedings of the 2020 IEEE/SICE International Symposium on System Integration, SII 2020. Institute of Electrical and Electronics Engineers Inc., : 489-494https://doi.org/10.1109/SII46433.2020.9026296Iwasaki T. Okamoto S. Akiyama Y. Yamada Y.

Principal Motion Ellipsoids: Gait Variability Index Invariant with Gait Speed.

IEEE Access. 8: 213330-213339https://doi.org/10.1109/ACCESS.2020.3041158Jabbar K.A. Seah W.-T. Lau L.K. Pang B.W.J. Ng D.H.-M. Tan Q.L.-L. Chen K.K. Jagadish M.U. Ng T.P. Wee S.-L.

Enhanced Gait Variability Index in older Asian Adults and Increased Physiological Fall Risk: Results from the Yishun Study.

Adv. Geriatr. Med. Res. 4Jensen C. Rosenlund S. Nielsen D.B. Overgaard S. Holsgaard-Larsen A.

The use of the Gait Deviation Index for the evaluation of participants following total hip arthroplasty: An explorative randomized trial.

Gait Posture. 42: 36-41https://doi.org/10.1016/j.gaitpost.2015.02.009Joanna M. Magdalena S. Katarzyna B.-M. Daniel S. Ewa L.-D.

The Utility of Gait Deviation Index (GDI) and Gait Variability Index (GVI) in Detecting Gait Changes in Spastic Hemiplegic Cerebral Palsy Children Using Ankle–Foot Orthoses (AFO). Children.

7. : 149https://doi.org/10.3390/children7100149

Principal component analysis: A review and recent developments.

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374https://doi.org/10.1098/rsta.2015.0202Kalron A. Frid L. Menascu S.

Gait Characteristics in Adolescents With Multiple Sclerosis.

Pediatr. Neurol. 68: 73-76https://doi.org/10.1016/j.pediatrneurol.2016.11.004Kalsi-Ryan S. Rienmueller A.C. Riehm L. Chan C. Jin D. Martin A.R. Badhiwala J.H. Akbar M.A. Massicotte E.M. Fehlings M.G.

Quantitative Assessment of Gait Characteristics in Degenerative Cervical Myelopathy: A Prospective Clinical Study.

J. Clin. Med. 9: 752https://doi.org/10.3390/jcm9030752Kark L. Vickers D. McIntosh A. Simmons A.

Use of gait summary measures with lower limb amputees.

Gait Posture. 35: 238-243Kawamura C.M. de Morais Filho M.C. Barreto M.M. de Paula Asa S.K. Juliano Y. Novo N.F.

Comparison between visual and three-dimensional gait analysis in patients with spastic diplegic cerebral palsy.

Gait Posture. 25: 18-24

Gait analysis at your fingertips: accuracy and reliability of mobile app enhanced observational gait analysis in children with Cerebral Palsy.

JPOSNA. : 2Kiernan D. Walsh M. O’sullivan R. O’brien T. Simms C.K.

The influence of estimated body segment parameters on predicted joint kinetics during diplegic cerebral palsy gait.

J. Biomech. 47: 284-288Kim S. Lim Y.H. Kang K. Park D. Lee H.W. Park J.S.

Functional Ambulation Profile (FAP) Score as a Potential Marker of Gait Analysis in Myotonic Dystrophy Type 1.

Front. Neurol. 11: 392https://doi.org/10.3389/fneur.2020.00392

The self-organizing map.

Proc. IEEE. 78: 1464-1480Koman L.A. Smith B. Goodman A. Mulvaney T.

Management of cerebral palsy with botulinum-A toxin: preliminary investigation.

J. Pediatr. Orthop. 13: 489-495Kulkarni V.A. Kephart D. Olleac R. Davids J.

Enhancing Observational Gait Analysis–Techniques and Tips for Analyzing Gait Without a Gait Lab.

JPOSNA. 2

留言 (0)

沒有登入
gif