Actinic lentigines from Japanese and European volunteers share similar impaired biological functions

Bastiaens M. Hoefnagel J. Westendorp R. Vermeer B.J. Bouwes J.N.

Bavinck, Solar lentigines are strongly related to sun exposure in contrast to ephelides.

Pigment Cell Res. 2004; 17: 225-229View in Article Scopus (91) PubMed Crossref Google ScholarWarrick E. Duval C. Nouveau S. Bastien P. Piffaut V. Chalmond B. et al.

Morphological and molecular characterization of actinic lentigos reveals alterations of the dermal extracellular matrix.

Br. J. Dermatol. 2017; 177: 1619-1632View in Article Scopus (6) PubMed Crossref Google ScholarBarysch M.J. Braun R.P. Kolm I. Ahlgrimm-Siesz V. Hofmann-Wellenhof R. Duval C. et al.

Keratinocytic malfunction as a trigger for the development of solar lentigines.

Dermatopathol. (Basel, Switz. ). 2019; 6: 1-11View in Article PubMed Google ScholarAndersen W.K. Labadie R.R. Bhawan J.

Histopathology of solar lentigines of the face: a quantitative study.

J. Am. Acad. Dermatol. 1997; 36: 444-447View in Article Scopus (74) PubMed Abstract Full Text PDF Google ScholarChoi W. Yin L. Smuda C. Batzer J. Hearing V.J. Kolbe L.

Molecular and histological characterization of age spots.

Exp. Dermatol. 2017; 26: 242-248View in Article Scopus (22) PubMed Crossref Google ScholarMontagna W. Hu F. Carlisle K.

A reinvestigation of solar lentigines.

Arch. Dermatol. 1980; 116: 1151-1154View in Article Scopus (65) PubMed Crossref Google ScholarCario-Andre M. Lepreux S. Pain C. Nizard C. Noblesse E. Taieb A.

Perilesional vs. lesional skin changes in senile lentigo.

J. Cutan. Pathol. 2004; 31: 441-447View in Article Scopus (43) PubMed Crossref Google ScholarLin C.B. Hu Y. Rossetti D. Chen N. David C. Slominski A. et al.

Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development.

J. Dermatol. Sci. 2010; 59: 91-97View in Article Scopus (31) PubMed Abstract Full Text Full Text PDF Google ScholarChen N. Hu Y. Li W.H. Eisinger M. Seiberg M. Lin C.B.

The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines.

Exp. Dermatol. 2010; 19: 865-872View in Article Scopus (52) PubMed Crossref Google ScholarKovacs D. Cardinali G. Aspite N. Cota C. Luzi F. Bellei B. et al.

Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo.

Br. J. Dermatol. 2010; View in Article Scopus (76) PubMed Crossref Google ScholarHattori H. Kawashima M. Ichikawa Y. Imokawa G.

The epidermal stem cell factor is over-expressed in lentigo senilis: implication for the mechanism of hyperpigmentation.

J. Invest Dermatol. 2004; 122: 1256-1265View in Article Scopus (93) PubMed Abstract Full Text Full Text PDF Google ScholarKadono S. Manaka I. Kawashima M. Kobayashi T. Imokawa G.

The role of the epidermal endothelin cascade in the hyperpigmentation mechanism of lentigo senilis.

J. Invest Dermatol. 2001; 116: 571-577View in Article Scopus (121) PubMed Abstract Full Text Full Text PDF Google ScholarAoki H. Moro O. Tagami H. Kishimoto J.

Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics.

Br. J. Dermatol. 2007; 156: 1214-1223View in Article Scopus (57) PubMed Crossref Google ScholarGoyarts E. Muizzuddin N. Maes D. Giacomoni P.U.

Morphological changes associated with aging: age spots and the microinflammatory model of skin aging.

Ann. N. Y. Acad. Sci. 2007; 1119: 32-39View in Article Scopus (29) PubMed Crossref Google ScholarIriyama S. Ono T. Aoki H. Amano S.

Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal-epidermal junction.

J. Dermatol. Sci. 2011; 64: 223-228View in Article Scopus (24) PubMed Abstract Full Text Full Text PDF Google ScholarAlexis A.F. Obioha J.O.

Ethnicity and aging skin.

J. Drugs Dermatol.: JDD. 2017; 16: s77-s80View in Article PubMed Google ScholarGoh S.H.

The treatment of visible signs of senescence: the Asian experience.

Br. J. Dermatol. 122. 1990; Suppl 35: 105-109View in Article Scopus (73) Crossref Google ScholarChua-Ty G. Goh C.L. Koh S.L.

Pattern of skin diseases at the National Skin Centre (Singapore) from 1989-1990.

Int. J. Dermatol. 1992; 31: 555-559View in Article Scopus (52) PubMed Crossref Google ScholarVierkotter A. Kramer U. Sugiri D. Morita A. Yamamoto A. Kaneko N. et al.

Development of lentigines in German and Japanese women correlates with variants in the SLC45A2 gene.

J. Invest Dermatol. 2012; 132: 733-736View in Article Scopus (15) PubMed Abstract Full Text Full Text PDF Google ScholarDel Bino S. Bernerd F.

Variations in skin colour and the biological consequences of ultraviolet radiation exposure.

Br. J. Dermatol. 169. 2013; Suppl 3: 33-40View in Article Scopus (103) Crossref Google ScholarNegishi K. Akita H. Tanaka S. Yokoyama Y. Wakamatsu S. Matsunaga K.

Comparative study of treatment efficacy and the incidence of post-inflammatory hyperpigmentation with different degrees of irradiation using two different quality-switched lasers for removing solar lentigines on Asian skin.

J. Eur. Acad. Dermatol. Venereol.: JEADV. 2013; 27: 307-312View in Article Scopus (0) PubMed Crossref Google ScholarNoblesse E. Nizard C. M C.-A. Lepreux S. Pain C. Schnebert S. et al.

Skin Ultrastructure in Senile Lentigo.

Ski. Pharmacol. Physiol. 2006; 19: 95-100View in Article Scopus (0) PubMed Crossref Google ScholarFogel P. Young S.S. Hawkins D.M. Ledirac N.

Inferential, robust non-negative matrix factorization analysis of microarray data.

Bioinformatics. 2007; 23: 44-49View in Article Scopus (51) PubMed Crossref Google ScholarMotokawa T. Kato T. Katagiri T. Matsunaga J. Takeuchi I. Tomita Y. et al.

Messenger RNA levels of melanogenesis-associated genes in lentigo senilis lesions.

J. Dermatol. Sci. 2005; 37: 120-123View in Article Scopus (17) PubMed Abstract Full Text Full Text PDF Google ScholarYamaguchi Y. Brenner M. Hearing V.J.

The regulation of skin pigmentation.

J. Biol. Chem. 2007; 282: 27557-27561View in Article Scopus (317) PubMed Abstract Full Text Full Text PDF Google ScholarReber L. Da Silva C.A. Frossard N.

Stem cell factor and its receptor c-Kit as targets for inflammatory diseases.

Eur. J. Pharm. 2006; 533: 327-340View in Article Scopus (0) PubMed Crossref Google ScholarImokawa G.

Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders.

Pigment Cell Res. 2004; 17: 96-110View in Article Scopus (294) PubMed Crossref Google ScholarHombria J.C. Lovegrove B.

Beyond homeosis--HOX function in morphogenesis and organogenesis.

Differ. ; Res. Biol. Divers. 2003; 71: 461-476View in Article Google ScholarStelnicki E.J. Komuves L.G. Kwong A.O. Holmes D. Klein P. Rozenfeld S. et al.

HOX homeobox genes exhibit spatial and temporal changes in expression during human skin development.

J. Invest Dermatol. 1998; 110: 110-115View in Article Scopus (107) PubMed Abstract Full Text Full Text PDF Google ScholarGao D. Chen H.Q.

Specific knockdown of HOXB7 inhibits cutaneous squamous cell carcinoma cell migration and invasion while inducing apoptosis via the Wnt/beta-catenin signaling pathway.

Am. J. Physiol. Cell Physiol. 2018; 315 (C675-c686)View in Article Scopus (19) Crossref Google ScholarKomuves L.G. Michael E. Arbeit J.M. Ma X.K. Kwong A. Stelnicki E. et al.

HOXB4 homeodomain protein is expressed in developing epidermis and skin disorders and modulates keratinocyte proliferation.

Dev. Dyn.: Off. Publ. Am. Assoc. Anat. 2002; 224: 58-68View in Article Google ScholarLloyd C. Yu Q.C. Cheng J. Turksen K. Degenstein L. Hutton E. et al.

The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14.

J. Cell Biol. 1995; 129: 1329-1344View in Article Scopus (0) PubMed Crossref

留言 (0)

沒有登入
gif