Imaging {alpha}-GalCer-Activated iNKT Cells in a Hepatic Metastatic Environment

Patients with colorectal cancer frequently develop liver metastases after, and perhaps as a consequence of, lifesaving surgical resection of the primary tumor. This creates a potential opportunity for prophylactic metastatic treatment with novel immunostimulatory molecules. Here, we used state-of-the-art intravital imaging of an experimental liver metastasis model to visualize the early behavior and function of invariant natural killer T (iNKT) cells stimulated with α-galactosylceramide (α-GalCer). Intravenous α-GalCer prior to tumor cell seeding in the liver significantly inhibited tumor growth. However, some seeding tumor cells survived. A multiple dosing regimen reduced tumor burden and prolonged the life of mice, whereas tumors returned within 5 days after a single dose of α-GalCer. With multiple doses of α-GalCer, iNKT cells increased in number and granularity (as did NK cells). As a result, the total number of contacts and time in contact with tumors increased substantially. In the absence of iNKT cells, the beneficial effect of α-GalCer was lost. Robust cytokine production dissipated over time. Repeated therapy, even after cytokine dissipation, led to reduced tumor burden and prolonged survival. Serial transplantation of tumors exposed to α-GalCer–activated iNKT cells did not induce greater resistance, suggesting no obvious epigenetic or genetic immunoediting in tumors exposed to activated iNKT cells. Very few tumor cells expressed CD1d in this model, and as such, adding monomers of CD1d–α-GalCer further reduced tumor growth. The data suggest early and repeated stimulation of iNKT cells with α-GalCer could have direct therapeutic benefit for patients with colorectal cancer who develop metastatic liver disease.

留言 (0)

沒有登入
gif