Causes and consequences of variation in development time in a field cricket

Variation in development time can affect life history traits that contribute to fitness. In Gryllus vocalis, a non-diapausing cricket with variable development time, we used a path analysis approach to determine the causative relationships between parental age, offspring development time and offspring life history traits. Our best-supported path model included both the effects of parental age and offspring development time on offspring morphological traits. This result suggests that offspring traits are influenced by both variation in acquisition of resources and trade-offs between traits. We found that crickets with longer development times became larger adults with better phenoloxidase-based immunity. This is consistent with the hypothesis that crickets must make a trade-off between developing quickly to avoid predation before reproduction and attaining better immunity and a larger adult body size that provides advantages in male-male competition, mate choice, and female fecundity. Slower-developing crickets were also more likely to be short-winged (unable to disperse by flight). Parental age has opposing direct and indirect effects on the body size of daughters, but when both the direct and indirect effects of parental age are taken into account, younger parents had smaller sons and daughters. This pattern may be attributable to a parental trade-off between the number and size of eggs produced with younger parents producing more eggs with fewer resources per egg. The relationships between variables in the life history traits of sons and daughters were similar, suggesting that parental age and development time had similar causative effects on male and female life history traits.

留言 (0)

沒有登入
gif