1. Huber-Wagner, S, Lefering, R, Qvick, LM, et al. Effect of whole-body CT during trauma resuscitation on survival: a retrospective, multicentre study. Lancet 2009;373:1455–1461.
Google Scholar |
Crossref |
Medline |
ISI2. Alagic, Z, Eriksson, A, Drageryd, E, et al. A new low-dose multi-phase trauma CT protocol and its impact on diagnostic assessment and radiation dose in multi-trauma patients. Emerg Radiol 2017;24:509–518.
Google Scholar |
Crossref |
Medline3. Berrington de Gonzalez, A, Mahesh, M, Kim, KP, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 2009;169:2071–2077.
Google Scholar |
Crossref |
Medline4. Byun, CS, Park, IH, Oh, JH, et al. Epidemiology of trauma patients and analysis of 268 mortality cases: trends of a single center in Korea. Yonsei Med J 2015;56:220–226.
Google Scholar |
Crossref |
Medline5. Yoong, S, Kothari, R, Brooks, A. Assessment of sensitivity of whole body CT for major trauma. Eur J Trauma Emerg Surg 2019;45:489–492.
Google Scholar |
Crossref |
Medline6. Godt JC, Eken T, Schulz A, et al. Triple-split-bolus versus single-bolus CT in abdominal trauma patients: a comparative study. Acta Radiol 2018; 59: 1038–1044.
Google Scholar7. Widmark, AFE, Heikkilä, IE, Wikan, K, et al. Veileder om medisinsk bruk av røntgen- og MR-apparatur. Veileder til forskrift om strålevern og bruk av stråling.
https://www.dsa.no/publikasjon/veileder-5-veileder-om-medisinsk-bruk-av-roentgen-og-mr-apparatur-underlagt-godkjenning.pdf. Accessed April 22, 2020.
Google Scholar8. Anderson, SW, Soto, JA, Lucey, BC, et al. Blunt trauma: feasibility and clinical utility of pelvic CT angiography performed with 64-detector row CT. Radiology 2008;246:410–419.
Google Scholar |
Crossref |
Medline |
ISI9. Keihani, S, Putbrese, BE, Rogers, DM, et al. Optimal timing of delayed excretory phase computed tomography scan for diagnosis of urinary extravasation after high-grade renal trauma. J Trauma Acute Care Surg 2019;86:274–281.
Google Scholar |
Crossref |
Medline10. Pan, X, Sidky, EY, Vannier, M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl 2009;25:1230009.
Google Scholar |
Crossref |
Medline11. Stiller, W . Basics of iterative reconstruction methods in computed tomography: a vendor-independent overview. Eur J Radiol 2018;109:147–154.
Google Scholar |
Crossref |
Medline12. SAFIRE- Sinogram affirmed iterative reconstrucion .
https://www.siemens-healthineers.com/en-us/molecular-imaging/options-and-upgrades/software-applications/safire. Accessed August 31, 2020.
Google Scholar13. Jensen, K, Martinsen, AC, Tingberg, A, et al. Comparing five different iterative reconstruction algorithms for computed tomography in an ROC study. Eur Radiol 2014;24:2989–3002.
Google Scholar |
Crossref |
Medline |
ISI14. Kalra, MK, Woisetschlager, M, Dahlstrom, N, et al. Radiation dose reduction with Sinogram Affirmed Iterative Reconstruction technique for abdominal computed tomography. J Comput Assist Tomogr 2012;36:339–346.
Google Scholar |
Crossref |
Medline |
ISI15. Love, A, Olsson, ML, Siemund, R, et al. Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 2013;86:20130388.
Google Scholar |
Crossref |
Medline |
ISI16. Macri, F, Greffier, J, Pereira, FR, et al. Ultra-low-dose chest CT with iterative reconstruction does not alter anatomical image quality. Diagn Interv Imaging 2016;97:1131–1140.
Google Scholar |
Crossref |
Medline17. Afadzi, M, Fossa, K, Andersen, HK, et al. Image quality measured from ultra-low dose chest computed tomography examination protocols using 6 different iterative reconstructions from 4 vendors, a phantom study. J Comput Assist Tomogr 2020;44:95–101.
Google Scholar |
Crossref |
Medline18. Hussami, M, Grabherr, S, Meuli, RA, et al. Severe pelvic injury: vascular lesions detected by ante- and post-mortem contrast medium-enhanced CT and associations with pelvic fractures. Int J Leg Med 2017;131:731–738.
Google Scholar |
Crossref |
Medline19. Padole, A, Deedar Ali Khawaja, R, Otrakji, A, et al. Comparison of measured and estimated CT organ doses for modulated and fixed tube current: a human cadaver study. Acad Radiol 2016;23:634–642.
Google Scholar |
Crossref |
Medline20. Ekpo, EU, Adejoh, T, Erim, AE. Dose benchmarks for paediatric head computed tomography examination in Nigeria. Radiat Prot Dosimetry 2019;185:464–471.
Google Scholar |
Medline21. Thitaikumar, A, Krouskop, TA, Ophir, J. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography. Phys Med Biol 2007;52:13–28.
Google Scholar |
Crossref |
Medline |
ISI22. Report EUR 16262 EN . European guidelines on quality criteria for computed tomography. Office for Official Publications of the European Communities; 1996.
Google Scholar23. Leipsic, J, Labounty, TM, Heilbron, B, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol 2010;195:649–654.
Google Scholar |
Crossref |
Medline |
ISI24. Nance, JW, Schoepf, UJ, Ebersberger, U. The role of iterative reconstruction techniques in cardiovascular CT. Curr Radiol Rep 2013;1:255–268.
Google Scholar |
Crossref25. Jensen, K, Andersen, HK, Smedby, O, et al. Quantitative measurements versus receiver operating characteristics and visual grading regression in CT images reconstructed with iterative reconstruction: a phantom study. Acad Radiol 2018;25:509–518.
Google Scholar |
Crossref |
Medline26. Smedby, Ö, Fredrikson, M. Visual grading regression: analysing data from visual grading experiments with regression models. The Br J Radiol 2010;83:767–775.
Google Scholar |
Crossref |
Medline |
ISI27. Koo, TK, Li, MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016;15:155–163.
Google Scholar |
Crossref |
Medline |
ISI28. Cohen, MD . ALARA, image gently and CT-induced cancer. Pediatr Radiol 2015;45:465–470.
Google Scholar |
Crossref |
Medline29. Brenner, DJ, Hall, EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007;357:2277–2284.
Google Scholar |
Crossref |
Medline |
ISI30. Gunn, ML, Kohr, JR. State of the art: technologies for computed tomography dose reduction. Emerg Radiol 2010;17:209–218.
Google Scholar |
Crossref |
Medline31. Osteras, BH, Heggen, KL, Pedersen, HK, et al. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality. Acta Radiol Open 2016;5:2058460116645831.
Google Scholar |
SAGE Journals |
ISI32. Schindera, ST, Odedra, D, Raza, SA, et al. Iterative reconstruction algorithm for CT: can radiation dose be decreased while low-contrast detectability is preserved? Radiology 2013;269:511–518.
Google Scholar |
Crossref |
Medline |
ISI33. Higaki, T, Nakamura, Y, Tatsugami, F, et al. Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 2019;37:73–80.
Google Scholar |
Crossref |
Medline34. De Crop, A, Smeets, P, Van Hoof, T, et al. Correlation of clinical and physical-technical image quality in chest CT: a human cadaver study applied on iterative reconstruction. BMC Med Imaging 2015;15:32.
Google Scholar |
Crossref |
Medline35. Mueck, FG, Roesch, S, Scherr, M, et al. How low can we go in contrast-enhanced CT imaging of the chest?: a dose-finding cadaver study using the model-based iterative image reconstruction approach. Acad Radiol 2015;22:345–356.
Google Scholar |
Crossref |
Medline36. Moloney, F, Twomey, M, Fama, D, et al. Determination of a suitable low-dose abdominopelvic CT protocol using model-based iterative reconstruction through cadaveric study. J Med Imaging Radiat Oncol 2018;62:625–633.
Google Scholar |
Crossref |
Medline37. Jensen, K, Aalokken, TM, Tingberg, A, et al. Image quality in oncologic chest computerized tomography with iterative reconstruction: a phantom study. J Comput Assist Tomogr 2016;40:351–356.
Google Scholar |
Crossref |
Medline38. Kataria, B, Althen, JN, Smedby, O, et al. Assessment of image quality in abdominal CT: potential dose reduction with model-based iterative reconstruction. Eur Radiol 2018;28:2464–2473.
Google Scholar |
Crossref |
Medline39. Ghetti, C, Ortenzia, O, Serreli, G. CT iterative reconstruction in image space: a phantom study. Phys Med 2012;28:161–165.
Google Scholar |
Crossref |
Medline40. Jensen, K, Hagemo, G, Tingberg, A, et al. Evaluation of image quality for 7 iterative reconstruction algorithms in chest computed tomography imaging: a phantom study. J Comput Assist Tomogr 2020;44:673–680.
Google Scholar |
Crossref |
Medline
留言 (0)