Differential DNA Methylation and Cardiometabolic Risk in African American Mother-Adolescent Dyads

Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., Irizarry, R. A. (2014). Minfi: A flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics, 30(10), 1363–1369. https://doi.org/10.1093/bioinformatics/btu049
Google Scholar Baccarelli, A., Ghosh, S. (2012). Environmental exposures, epigenetics and cardiovascular disease. Current Opinions in Clinical Nutrition & Metabolism, 15, 323–329. https://doi.org/10.1097/MCO.0b013e328354bf5c
Google Scholar Baccarelli, A., Rienstra, M., Benjamin, E. J. (2010). Cardiovascular epigenetics: Basic concepts and results from animal and human studies. Circulation and Cardiovascular Genetics, 3, 567–573. https://doi.org/CIRCGENETICS.110.958744
Google Scholar Baccarelli, A., Wright, R., Bollati, V., Litonjua, A., Zanobetti, A., Tarantini, L., Sparrow, D., Vokonas, P., Schwartz, J. (2010). Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology, 21, 819–828. https://doi.org/10.1097/EDE.0b013e3181f20457
Google Scholar Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, Methodological, 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Google Scholar Buchan, D. S., Young, J. D., Boddy, L. M., Malina, R. M., Baker, J. S. (2013). Fitness and adiposity are independently associated with cardiometabolic risk in youth. BioMed Research International, Article ID 261698. https://doi.org/10.1155/2013/261698
Google Scholar Burrows, R, Correa-Burrows, P, Reyes, M, Blanco, E, Albala, C, Gahagan, S. (2015). Healthy Chilean adolescents with HOMA-IR ≥ 2.6 have increased cardiometabolic risk: Association with genetic, biological, and environmental factors. Journal of Diabetes Research, Article 783296. https://doi.org/10.1155/2015/783296
Google Scholar Carnethon, M. R., Pu, J., Howard, G., Albert, M. A., Anderson, C. A. M., Bertoni, A. G., Mujahid, M. S., Palaniappan, L., Taylor, H. A., Willis, M., Yancy, C. W. (2017). Cardiovascular health in African Americans: A scientific statement from the American heart association. Circulation, 136, e393–e423. https://doi.org/10.1161/CIR.0000000000000534
Google Scholar Demerath, E. W., Guan, W., Grove, M. L., Aslibekyan, S., Mendelson, M., Zhou, Y., Hedman, A. K., Sandling, J. K., Li, L., Irvin, M. R., Zhi, D., Deloukas, P., Liang, L., Liu, C., Bressler, J., Spector, T. D., North, K., Li, Y., Absher, D. M.…Boerwindle, E . (2015). Epigenome-wide association study of BMI, BMI change, and waist circumference in African American adults identifies multiple replicated loci. Human and Molecular Genetics, 24, 4464–4479. https://doi.org/10.1093/hmg/ddv161
Google Scholar Dominici, R., Luraschi, P., Franzini, C. (2004). Measurement of C-reactive protein: Two high sensitivity methods compared. Journal of Clinical Laboratory Analysis, 18(5), 280–284. https://doi.org/10.1002/jcla.20038
Google Scholar Evans, G. W., Kim, P., Ting, A. H., Tesher, H. B., Shannis, D. (2007). Cumulative risk, maternal responsiveness, and allostatic load among young adolescents. Developmental Psychology, 43(2), 341–351. https://doi-org.proxy.library.vcu.edu/10.1037/0012-1649.43.2.341
Google Scholar Ford, E. S., Li, C., Imperatore, G., Cook, S. (2006). Age, sex, and ethnic variations in serum insulin concentrations among U.S. youth: Findings from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care, 29(12), 2605–2611. https://doi-org /10.2337/dc06-1083
Google Scholar Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A., Willeit, P. (2014). Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. British Medical Journal (Clinical Research Edition), 349, g4227. https://doi-org.proxy.library.vcu.edu/10.1136/bmj.g4227
Google Scholar Huan, T., Joehanes, R., Song, C., Peng, F., Guo, Y., Mendelson, M., Yao, C., Liu, C., Ma, J, Richard, M., Agha, G., Guan, W., Almli, L. M., Conneely, K. N., Keefe, J. (2019). Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease. Nature Communications. https://doi.org/10.1038/s41467-019-12228-z
Google Scholar Keskin, M., Kurtoglu, S., Kendirci, M., Atabek, M. E., Yazici, C. (2005). Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics, 115, e500–503. https://doi.org/10.1542/peds.2004-1921
Google Scholar Kliewer, W., Robins, J. (2017). Cumulative risk and physiologic stress responses in African American adolescents. Biological Research for Nursing, 19, 428–439. https://doi.org/10.1177/1099800417702742
Google Scholar Kliewer, W., Robins, J., Borre, A. (2019). Community violence exposure, sleep disruption, and insulin resistance in low-income urban adolescents. International Journal of Behavioral Medicine, 26, 437–442. https://doi.org/10.1007/s12529-019-09801-7
Google Scholar Li, H., Zhou, J., Yue, Z., Feng, L., Luo, Z., Chen, S., Yang, X., Xiao, B. (2017). A complex association between ABCA7 genotypes and blood lipid levels in Southern Chinese Han patients of sporadic Alzheimer’s disease. Journal of the Neurological Sciences, 382, 13–17. https://doi-org/10.1016/j.jns.2017.09.016
Google Scholar Maksimovic, J., Phipson, B., Oshlack, A. A cross-package Bioconductor workflow for analysing methylation array data [version 3; referees: 4 approved.] F1000Research. https://doi.org/10.12688/f1000research.8839.3
Google Scholar Mehta, S. K. (2015). Waist circumference to height ratio in children and adolescents. Clinical Pediatrics, 54, 652–658. https://doi.org/10.1177/0009922814557784
Google Scholar Mokha, J. S., Srinivasan, S. R., DasMahapatra, P., Fernandez, C., Chen, W., Xu, J., Berenson, G. S. (2010). Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa heart study. BMC Pediatrics, 10(73). https://doi.org/10.1186/1471-2431-10-73
Google Scholar Moon, S., Lee, Y., Won, S., Lee, J. (2018). Multiple genotype-phenotype association study reveals intronic variant pair on SIDT2 associated with metabolic syndrome in a Korean population. Human Genomics, 12(1), Article 48. https://doi.org/10.1186/s40246-018-0180-4
Google Scholar Portha, B., Fournier, A., Kioon, A., Mezger, V., Movassat, J. (2014). Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility. Biochimie, 97, 1–15. https://doi.org/j.biochi.2013.10.003
Google Scholar Qiagen Gentra Puregene Handbook (2011). Retrieved September 28, 2016, from https://www.qiagen.com/us/
Google Scholar Qorbani, M., Kelishadi, R., Farrokhi-Khajeh-Pasha, Y., Motlagh, M., Aminaee, T., Ardalan, G., Asayesh, H., Shafiee, G., Taslimi, M., Poursafa, P., Heshmat, R., Larijani, B. (2013). Association of anthropometric measures with cardiovascular risk factors and metabolic syndrome in normal weight children and adolescents. Obesity Facts, 6(5), 483–492. https://doi.org/10.1159/000356011
Google Scholar Raum, J. C., Soleimanpour, S. A., Groff, D. N., Coré, N., Fasano, L., Garratt, A. N., Dai, C., Powers, A. C., Stoffers, D. A. (2015). Tshz1 regulates pancreatic β-Cell maturation. Diabetes, 64(8), 2905–2914. https://doi.org/10.2337/db14-1443
Google Scholar Rehman, K., Akash, M. S. (2016). Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? Journal of Biomedical Science, 23(1), 87. https://doi-org/10.1186/s12929-016-0303-y
Google Scholar Robins, J., Kliewer, W. (2019). Stress and coping profiles and cardiometabolic risk in low-income African American women. Journal of Women’s Health, 28, 636–645. https://doi.org/10.1089/jwh.2017.6904
Google Scholar Rosende, A., Pellegrini, C., Inglesias, R. (2013). Obesity and metabolic syndrome in children and adolescents. Medicina, 73, 470–481.
Google Scholar | Medline Ross, R., Neeland, I. J., Yamashita, S., Shai, I., Seidell, J., Magni, P., Santos, R. D., Arsenault, B., Cuevas, A., Hu, F. B., Griffin, B. A., Zambon, A., Barter, P., Fruchart, J., Eckel, R. H., Matsuzawa, Y., Després, J. (2020). Waist circumference as a vital sign in clinical practice: A consensus statement from the IAS and ICCR working group on visceral obesity. Nature Reviews Endocrinology, 16, 177–189. https://doi.org/10.1038/s41574-019-0310-7
Google Scholar Saab, K. R., Kendrick, J., Yracheta, J. M., Lanaspa, M. A., Pollard, M., Johnson, R. J. (2015). New insights on the risk for cardiovascular disease in African Americans: The role of added sugars. Journal of the American Society of Nephrology, 26, 247–257. https://doi.org/10.1681/ASN.2014040393
Google Scholar Sardinha, L. B., Santos, D. A., Silva, A. M., Grøntved, A., Andersen, L. B., Ekelund, U. (2016). A comparison between BMI, waist circumference, and waist-to-height ratio for identifying cardio-metabolic risk in children and adolescents. PLoS One, 11(2), Article e0149351. https://doi.org/10.1371/journal.pone.0149351
Google Scholar Saydah, S., Bullard, K. M., Imperatore, G., Geiss, L., Gregg, E. W. (2013). Cardiometabolic risk factors among US adolescents and young adults and risk of early mortality. Pediatrics, 131(3), e679–e686. https://doi.org/10.1542/peds.2012-2583
Google Scholar Schnabel, R. B., Baccarelli, A., Lin, H., Ellinor, P. T., Benjamin, E. J. (2012). Next steps in cardiovascular disease genomic research: Sequencing, epigenetics and transcriptomics. Clinical Chemistry, 58(1), 113–126. https://doi.org/10.1373/clinchem.2011.170423
Google Scholar Sharma, P., Garg, G., Kumar, A., Mohammad, F., Kumar, S. R., Tanwar, V. S., Sati, S., Sharma, A., Karthikeyan, G., Brahmachari, V., Sengupta, S. (2014). Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients. Gene, 541, 31–40. https://doi.org/10.1016/j.gene.2014.02.034
Google Scholar Shrivastava, A. K., Singh, H. V., Raizada, A., Singh, S. K. (2014). C-reactive protein, inflammation and coronary heart disease. The Egyptian Heart Journal, 67, 89–97. https://doi.org/10/1016/j/ehj.2014.11.005
Google Scholar Song, Y., Manson, J. E., Tinker, L., Howard, B. V., Kuller, L. H., Nathan, L., Rifai, N., Liu, S. (2007). Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: The Women’s Health Initiative Observational Study. Diabetes Care, 30(7), 1747–1752. https://doi-org/10.2337/dc07-0358
Google Scholar Soriano-Guillén, L., Hernández-Garcia, B., Pita, J., Domínguez-Garrido, N., Del Río-Camacho, G., Rovira, A. (2008). High-sensitivity C-reactive protein is a good marker of cardiovascular risk in obese children and adolescents. European Journal of Endocrinology, 159, R1–R4. https://doi.org/10.1530/EJE-08-0212
Google Scholar Udali, S., Guarini, P., Moruzzi, S., Choi, S-W., Friso, S. (2013). Cardiovascular epigenetics: From DNA methylation to microRNAs. Molecular Aspects of Medicine, 34, 883–901.
Google Scholar | Crossref | Medline van Belle, G. (2000). Statistical rules of thumb. John Wiley and Sons.
Google Scholar Viitasala, A., Schnurr, T. A., Pitkänen, N., Hollensted, M., Nielsen, T., Pahkala, K., Atalay, M., Lind, M. V., Heikkinen, S., Frithioff-Bøjsøe, C., Fonvig, C. E., Grarup, N., Kähönen, M., Carrasquilla, G. D., Larnkjaer, A., Pedersen, O., Michaelsen, K. F., Lakka, T. A., Holm, J.…Kilpeläinen, T. O . (2019). Abdominal adiposity and cardiometabolic risk factors in children and adolescents: A Mendelian randomization analysis. American Journal of Clinical Nutrition, 110(5), 1079–1087. https://doi.org/10.1093/ajcn/nqz187
Google Scholar Webster, A. L. H., Yan, M. S-C., Marsden, P. A. (2013). Epigenetics and cardiovascular disease. Canadian Journal of Cardiology, 29, 46–57.
Google Scholar | Crossref | Medline | ISI Wildman, R. P., Muntner, P., Reynolds, K., McGinn, A. P., Rajpathak, S., Wylie-Rosett, J., Sowers, M. R. (2008). The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Archives of Internal Medicine, 168(15), 1617–1624. https://doi-org/10.1001/archinte.168.15.1617
Google Scholar Wright, M. L., Dozmorov, M. G., Wolen, A. R., Jackson-Cook, C., Starkweather, A. R., Lyon, D. E., York, T. P. (2016). Establishing an analytical pipeline for genome-wide DNA methylation. Clinical Epigenetics, 8(45), https://doi.org/10.1186/s13148-016-0212-7
Google Scholar Zhang, X., Frame, A. A., Williams, J. S., Wainford, R. D. (2018). GNAI2 polymorphic variance associates with salt sensitivity of blood pressure in the genetic epidemiology network of salt sensitivity study. Physiological Genomics, 50(9), 724–725. https://doi.org/10.1152/physiolgenomics.00141.2017
Google Scholar Zhang, H., Zhang, T., Li, S., Li, Y., Hussain, A., Fernandez, C., Harville, E., Bazzano, L. A., He, J., Chen, W. (2015). Long-term impact of childhood adiposity on adult metabolic syndrome is modified by insulin resistance: The Bogalusa Heart Study. Scientific Reports, 5, 17885. https://doi-org.proxy.library.vcu.edu/10.1038/srep17885
Google Scholar

留言 (0)

沒有登入
gif