Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., Irizarry, R. A. (2014). Minfi: A flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics, 30(10), 1363–1369.
https://doi.org/10.1093/bioinformatics/btu049 Google Scholar
Baccarelli, A., Ghosh, S. (2012). Environmental exposures, epigenetics and cardiovascular disease. Current Opinions in Clinical Nutrition & Metabolism, 15, 323–329.
https://doi.org/10.1097/MCO.0b013e328354bf5c Google Scholar
Baccarelli, A., Rienstra, M., Benjamin, E. J. (2010). Cardiovascular epigenetics: Basic concepts and results from animal and human studies. Circulation and Cardiovascular Genetics, 3, 567–573.
https://doi.org/CIRCGENETICS.110.958744 Google Scholar
Baccarelli, A., Wright, R., Bollati, V., Litonjua, A., Zanobetti, A., Tarantini, L., Sparrow, D., Vokonas, P., Schwartz, J. (2010). Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology, 21, 819–828.
https://doi.org/10.1097/EDE.0b013e3181f20457 Google Scholar
Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, Methodological, 57(1), 289–300.
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x Google Scholar
Buchan, D. S., Young, J. D., Boddy, L. M., Malina, R. M., Baker, J. S. (2013). Fitness and adiposity are independently associated with cardiometabolic risk in youth. BioMed Research International, Article ID 261698.
https://doi.org/10.1155/2013/261698 Google Scholar
Burrows, R, Correa-Burrows, P, Reyes, M, Blanco, E, Albala, C, Gahagan, S. (2015). Healthy Chilean adolescents with HOMA-IR ≥ 2.6 have increased cardiometabolic risk: Association with genetic, biological, and environmental factors. Journal of Diabetes Research, Article 783296.
https://doi.org/10.1155/2015/783296 Google Scholar
Carnethon, M. R., Pu, J., Howard, G., Albert, M. A., Anderson, C. A. M., Bertoni, A. G., Mujahid, M. S., Palaniappan, L., Taylor, H. A., Willis, M., Yancy, C. W. (2017). Cardiovascular health in African Americans: A scientific statement from the American heart association. Circulation, 136, e393–e423.
https://doi.org/10.1161/CIR.0000000000000534 Google Scholar
Demerath, E. W., Guan, W., Grove, M. L., Aslibekyan, S., Mendelson, M., Zhou, Y., Hedman, A. K., Sandling, J. K., Li, L., Irvin, M. R., Zhi, D., Deloukas, P., Liang, L., Liu, C., Bressler, J., Spector, T. D., North, K., Li, Y., Absher, D. M.…Boerwindle, E . (2015). Epigenome-wide association study of BMI, BMI change, and waist circumference in African American adults identifies multiple replicated loci. Human and Molecular Genetics, 24, 4464–4479.
https://doi.org/10.1093/hmg/ddv161 Google Scholar
Dominici, R., Luraschi, P., Franzini, C. (2004). Measurement of C-reactive protein: Two high sensitivity methods compared. Journal of Clinical Laboratory Analysis, 18(5), 280–284.
https://doi.org/10.1002/jcla.20038 Google Scholar
Evans, G. W., Kim, P., Ting, A. H., Tesher, H. B., Shannis, D. (2007). Cumulative risk, maternal responsiveness, and allostatic load among young adolescents. Developmental Psychology, 43(2), 341–351.
https://doi-org.proxy.library.vcu.edu/10.1037/0012-1649.43.2.341 Google Scholar
Ford, E. S., Li, C., Imperatore, G., Cook, S. (2006). Age, sex, and ethnic variations in serum insulin concentrations among U.S. youth: Findings from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care, 29(12), 2605–2611.
https://doi-org /10.2337/dc06-1083 Google Scholar
Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A., Willeit, P. (2014). Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. British Medical Journal (Clinical Research Edition), 349, g4227.
https://doi-org.proxy.library.vcu.edu/10.1136/bmj.g4227 Google Scholar
Huan, T., Joehanes, R., Song, C., Peng, F., Guo, Y., Mendelson, M., Yao, C., Liu, C., Ma, J, Richard, M., Agha, G., Guan, W., Almli, L. M., Conneely, K. N., Keefe, J. (2019). Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease. Nature Communications.
https://doi.org/10.1038/s41467-019-12228-z Google Scholar
Keskin, M., Kurtoglu, S., Kendirci, M., Atabek, M. E., Yazici, C. (2005). Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics, 115, e500–503.
https://doi.org/10.1542/peds.2004-1921 Google Scholar
Kliewer, W., Robins, J. (2017). Cumulative risk and physiologic stress responses in African American adolescents. Biological Research for Nursing, 19, 428–439.
https://doi.org/10.1177/1099800417702742 Google Scholar
Kliewer, W., Robins, J., Borre, A. (2019). Community violence exposure, sleep disruption, and insulin resistance in low-income urban adolescents. International Journal of Behavioral Medicine, 26, 437–442.
https://doi.org/10.1007/s12529-019-09801-7 Google Scholar
Li, H., Zhou, J., Yue, Z., Feng, L., Luo, Z., Chen, S., Yang, X., Xiao, B. (2017). A complex association between ABCA7 genotypes and blood lipid levels in Southern Chinese Han patients of sporadic Alzheimer’s disease. Journal of the Neurological Sciences, 382, 13–17.
https://doi-org/10.1016/j.jns.2017.09.016 Google Scholar
Maksimovic, J., Phipson, B., Oshlack, A. A cross-package Bioconductor workflow for analysing methylation array data [version 3; referees: 4 approved.] F1000Research.
https://doi.org/10.12688/f1000research.8839.3 Google Scholar
Mehta, S. K. (2015). Waist circumference to height ratio in children and adolescents. Clinical Pediatrics, 54, 652–658.
https://doi.org/10.1177/0009922814557784 Google Scholar
Mokha, J. S., Srinivasan, S. R., DasMahapatra, P., Fernandez, C., Chen, W., Xu, J., Berenson, G. S. (2010). Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa heart study. BMC Pediatrics, 10(73).
https://doi.org/10.1186/1471-2431-10-73 Google Scholar
Moon, S., Lee, Y., Won, S., Lee, J. (2018). Multiple genotype-phenotype association study reveals intronic variant pair on SIDT2 associated with metabolic syndrome in a Korean population. Human Genomics, 12(1), Article 48.
https://doi.org/10.1186/s40246-018-0180-4 Google Scholar
Portha, B., Fournier, A., Kioon, A., Mezger, V., Movassat, J. (2014). Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility. Biochimie, 97, 1–15.
https://doi.org/j.biochi.2013.10.003 Google Scholar
Qiagen Gentra Puregene Handbook (2011). Retrieved September 28, 2016, from
https://www.qiagen.com/us/ Google Scholar
Qorbani, M., Kelishadi, R., Farrokhi-Khajeh-Pasha, Y., Motlagh, M., Aminaee, T., Ardalan, G., Asayesh, H., Shafiee, G., Taslimi, M., Poursafa, P., Heshmat, R., Larijani, B. (2013). Association of anthropometric measures with cardiovascular risk factors and metabolic syndrome in normal weight children and adolescents. Obesity Facts, 6(5), 483–492.
https://doi.org/10.1159/000356011 Google Scholar
Raum, J. C., Soleimanpour, S. A., Groff, D. N., Coré, N., Fasano, L., Garratt, A. N., Dai, C., Powers, A. C., Stoffers, D. A. (2015). Tshz1 regulates pancreatic β-Cell maturation. Diabetes, 64(8), 2905–2914.
https://doi.org/10.2337/db14-1443 Google Scholar
Rehman, K., Akash, M. S. (2016). Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? Journal of Biomedical Science, 23(1), 87.
https://doi-org/10.1186/s12929-016-0303-y Google Scholar
Robins, J., Kliewer, W. (2019). Stress and coping profiles and cardiometabolic risk in low-income African American women. Journal of Women’s Health, 28, 636–645.
https://doi.org/10.1089/jwh.2017.6904 Google Scholar
Rosende, A., Pellegrini, C., Inglesias, R. (2013). Obesity and metabolic syndrome in children and adolescents. Medicina, 73, 470–481.
Google Scholar |
Medline
Ross, R., Neeland, I. J., Yamashita, S., Shai, I., Seidell, J., Magni, P., Santos, R. D., Arsenault, B., Cuevas, A., Hu, F. B., Griffin, B. A., Zambon, A., Barter, P., Fruchart, J., Eckel, R. H., Matsuzawa, Y., Després, J. (2020). Waist circumference as a vital sign in clinical practice: A consensus statement from the IAS and ICCR working group on visceral obesity. Nature Reviews Endocrinology, 16, 177–189.
https://doi.org/10.1038/s41574-019-0310-7 Google Scholar
Saab, K. R., Kendrick, J., Yracheta, J. M., Lanaspa, M. A., Pollard, M., Johnson, R. J. (2015). New insights on the risk for cardiovascular disease in African Americans: The role of added sugars. Journal of the American Society of Nephrology, 26, 247–257.
https://doi.org/10.1681/ASN.2014040393 Google Scholar
Sardinha, L. B., Santos, D. A., Silva, A. M., Grøntved, A., Andersen, L. B., Ekelund, U. (2016). A comparison between BMI, waist circumference, and waist-to-height ratio for identifying cardio-metabolic risk in children and adolescents. PLoS One, 11(2), Article e0149351.
https://doi.org/10.1371/journal.pone.0149351 Google Scholar
Saydah, S., Bullard, K. M., Imperatore, G., Geiss, L., Gregg, E. W. (2013). Cardiometabolic risk factors among US adolescents and young adults and risk of early mortality. Pediatrics, 131(3), e679–e686.
https://doi.org/10.1542/peds.2012-2583 Google Scholar
Schnabel, R. B., Baccarelli, A., Lin, H., Ellinor, P. T., Benjamin, E. J. (2012). Next steps in cardiovascular disease genomic research: Sequencing, epigenetics and transcriptomics. Clinical Chemistry, 58(1), 113–126.
https://doi.org/10.1373/clinchem.2011.170423 Google Scholar
Sharma, P., Garg, G., Kumar, A., Mohammad, F., Kumar, S. R., Tanwar, V. S., Sati, S., Sharma, A., Karthikeyan, G., Brahmachari, V., Sengupta, S. (2014). Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients. Gene, 541, 31–40.
https://doi.org/10.1016/j.gene.2014.02.034 Google Scholar
Shrivastava, A. K., Singh, H. V., Raizada, A., Singh, S. K. (2014). C-reactive protein, inflammation and coronary heart disease. The Egyptian Heart Journal, 67, 89–97.
https://doi.org/10/1016/j/ehj.2014.11.005 Google Scholar
Song, Y., Manson, J. E., Tinker, L., Howard, B. V., Kuller, L. H., Nathan, L., Rifai, N., Liu, S. (2007). Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: The Women’s Health Initiative Observational Study. Diabetes Care, 30(7), 1747–1752.
https://doi-org/10.2337/dc07-0358 Google Scholar
Soriano-Guillén, L., Hernández-Garcia, B., Pita, J., Domínguez-Garrido, N., Del Río-Camacho, G., Rovira, A. (2008). High-sensitivity C-reactive protein is a good marker of cardiovascular risk in obese children and adolescents. European Journal of Endocrinology, 159, R1–R4.
https://doi.org/10.1530/EJE-08-0212 Google Scholar
Udali, S., Guarini, P., Moruzzi, S., Choi, S-W., Friso, S. (2013). Cardiovascular epigenetics: From DNA methylation to microRNAs. Molecular Aspects of Medicine, 34, 883–901.
Google Scholar |
Crossref |
Medline
van Belle, G. (2000). Statistical rules of thumb. John Wiley and Sons.
Google Scholar
Viitasala, A., Schnurr, T. A., Pitkänen, N., Hollensted, M., Nielsen, T., Pahkala, K., Atalay, M., Lind, M. V., Heikkinen, S., Frithioff-Bøjsøe, C., Fonvig, C. E., Grarup, N., Kähönen, M., Carrasquilla, G. D., Larnkjaer, A., Pedersen, O., Michaelsen, K. F., Lakka, T. A., Holm, J.…Kilpeläinen, T. O . (2019). Abdominal adiposity and cardiometabolic risk factors in children and adolescents: A Mendelian randomization analysis. American Journal of Clinical Nutrition, 110(5), 1079–1087.
https://doi.org/10.1093/ajcn/nqz187 Google Scholar
Webster, A. L. H., Yan, M. S-C., Marsden, P. A. (2013). Epigenetics and cardiovascular disease. Canadian Journal of Cardiology, 29, 46–57.
Google Scholar |
Crossref |
Medline |
ISI
Wildman, R. P., Muntner, P., Reynolds, K., McGinn, A. P., Rajpathak, S., Wylie-Rosett, J., Sowers, M. R. (2008). The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Archives of Internal Medicine, 168(15), 1617–1624.
https://doi-org/10.1001/archinte.168.15.1617 Google Scholar
Wright, M. L., Dozmorov, M. G., Wolen, A. R., Jackson-Cook, C., Starkweather, A. R., Lyon, D. E., York, T. P. (2016). Establishing an analytical pipeline for genome-wide DNA methylation. Clinical Epigenetics, 8(45),
https://doi.org/10.1186/s13148-016-0212-7 Google Scholar
Zhang, X., Frame, A. A., Williams, J. S., Wainford, R. D. (2018). GNAI2 polymorphic variance associates with salt sensitivity of blood pressure in the genetic epidemiology network of salt sensitivity study. Physiological Genomics, 50(9), 724–725.
https://doi.org/10.1152/physiolgenomics.00141.2017 Google Scholar
Zhang, H., Zhang, T., Li, S., Li, Y., Hussain, A., Fernandez, C., Harville, E., Bazzano, L. A., He, J., Chen, W. (2015). Long-term impact of childhood adiposity on adult metabolic syndrome is modified by insulin resistance: The Bogalusa Heart Study. Scientific Reports, 5, 17885.
https://doi-org.proxy.library.vcu.edu/10.1038/srep17885 Google Scholar
留言 (0)