Poly(ADP-ribose) polymerases (PARP) act as DNA damage sensors that produce poly(ADP-ribose) (PAR) chains at double-strand breaks, facilitating the recruitment of repair factors. Cancers with homologous recombination defects are sensitive to small molecule PARP inhibitors. Despite PARP5B gene copy number changes in many cancers, the effects of this genetic alteration on tumor phenotype are largely unknown. To better understand this clinical finding, we characterized a PARP5B null mutation in a carcinogen-induced in vivo head and neck squamous cell carcinoma (SCC) model. Reduced PARP5B expression inhibited tumor growth, induced primary tumor differentiation and apoptosis, and inhibited cell proliferation and metastasis. Loss of PARP5B expression-induced ataxia telangiectasia and Rad3 related (ATR) activation and depleted the cancer stem cell fraction. PARP5B null tumor cells lacked 53BP1+ double-strand break foci, ATM activation, and p53 induction compared to PARP5B+/+ cancers. PARP5B null SCC expresses a multiprotein complex containing PML, pRPA, Rad50, Rad51, XRCC1, proliferating cell nuclear antigen (PCNA), and Mcm2, suggesting an HR-mediated repair mechanism at DNA replication foci. Low doses of etoposide combined with the PARP5B inhibitor XAV939 induced senescence and apoptosis in human SCC lines. NBS1 overexpression in these cells inhibited the effects of low-dose etoposide/XAV939 treatment. Our results indicate that PARP5B inhibition is new targeted cancer therapy.
留言 (0)