1.
Lin, JC, Wang, WY, Chen, KY, et al. Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 2004; 350: 2461–2470.
Google Scholar |
Crossref |
Medline |
ISI2.
Li, YQ, Khin, NS, Chua, MLK. The evolution of Epstein-Barr virus detection in nasopharyngeal carcinoma. Cancer Biol Med 2018; 15: 1–5.
Google Scholar |
Crossref |
Medline3.
Chan, KCA, Woo, JKS, King, A, et al. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N Engl J Med 2017; 377: 513–522.
Google Scholar |
Crossref |
Medline4.
Lo, YM, Chan, LY, Chan, AT, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 1999; 59: 5452–5455.
Google Scholar |
Medline |
ISI5.
Wang, WY, Twu, CW, Lin, WY, et al. Plasma Epstein-Barr virus DNA screening followed by 18F-fluoro-2-deoxy-D-glucose positron emission tomography in detecting posttreatment failures of nasopharyngeal carcinoma. Cancer 2011; 117: 4452–4459.
Google Scholar |
Crossref |
Medline6.
Lo, YM, Leung, SF, Chan, LY, et al. Plasma cell-free Epstein-Barr virus DNA quantitation in patients with nasopharyngeal carcinoma. Correlation with clinical staging. Ann N Y Acad Sci 2000; 906: 99–101.
Google Scholar |
Crossref |
Medline7.
Tang, LQ, Li, CF, Li, J, et al. Establishment and validation of prognostic nomograms for endemic nasopharyngeal carcinoma. J Natl Cancer Inst 2016; 108: djv291.
Google Scholar |
Crossref8.
Guo, R, Tang, LL, Mao, YP, et al. Proposed modifications and incorporation of plasma Epstein-Barr virus DNA improve the TNM staging system for Epstein-Barr virus-related nasopharyngeal carcinoma. Cancer 2019; 125: 79–89.
Google Scholar |
Crossref |
Medline9.
Leung, SF, Zee, B, Ma, BB, et al. Plasma Epstein-Barr viral deoxyribonucleic acid quantitation complements tumor-node-metastasis staging prognostication in nasopharyngeal carcinoma. J Clin Oncol 2006; 24: 5414–5418.
Google Scholar |
Crossref |
Medline |
ISI10.
Lee, VH, Kwong, DL, Leung, TW, et al. The addition of pretreatment plasma Epstein-Barr virus DNA into the 8th edition of nasopharyngeal cancer TNM stage classification. Int J Cancer 2019; 144: 1713–1722.
Google Scholar |
Crossref |
Medline11.
Sun, Y, Li, WF, Chen, NY, et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial. Lancet Oncol 2016; 17: 1509–1520.
Google Scholar |
Crossref |
Medline |
ISI12.
Pan, JJ, Ng, WT, Zong, JF, et al. Proposal for the 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy. Cancer 2016; 122: 546–558.
Google Scholar |
Crossref |
Medline13.
Therneau, TM, Grambsch, PM. Modeling survival data: extending the Cox model. New York: Springer, 2000.
Google Scholar |
Crossref14.
Molinari, N, Daures, JP, Durand, JF. Regression splines for threshold selection in survival data analysis. Stat Med 2001; 20: 237–247.
Google Scholar |
Crossref |
Medline15.
Heinzl, H, Kaider, A. Gaining more flexibility in Cox proportional hazards regression models with cubic spline functions. Comput Methods Programs Biomed 1997; 54: 201–208.
Google Scholar |
Crossref |
Medline |
ISI16.
Xu, W, Shen, XW, Su, J, et al. Refining evaluation methodology on TNM stage system: assessment on HPV-related oropharyngeal cancer. Austin Biom and Biostat 2015; 2: 1014.
Google Scholar |
Medline17.
Sun, X, Su, S, Chen, C, et al. Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities. Radiother Oncol 2014; 110: 398–403.
Google Scholar |
Crossref |
Medline18.
Setton, J, Han, J, Kannarunimit, D, et al. Long-term patterns of relapse and survival following definitive intensity-modulated radiotherapy for non-endemic nasopharyngeal carcinoma. Oral Oncol 2016; 53: 67–73.
Google Scholar |
Crossref |
Medline19.
Ganz, P, Heidecker, B, Hveem, K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 2016; 315: 2532–2541.
Google Scholar |
Crossref |
Medline20.
Fraser, M, Sabelnykova, VY, Yamaguchi, TN, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017; 541: 359–364.
Google Scholar |
Crossref |
Medline21.
Li, YY, Chung, GT, Lui, VW, et al. Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. Nat Commun 2017; 8: 14121.
Google Scholar |
Crossref |
Medline22.
Lv, JW, Chen, YP, Zhou, GQ, et al. Liquid biopsy tracking during sequential chemo-radiotherapy identifies distinct prognostic phenotypes in nasopharyngeal carcinoma. Nat Commun 2019; 10: 3941.
Google Scholar |
Crossref |
Medline23.
Le, QT, Zhang, Q, Cao, H, et al. An international collaboration to harmonize the quantitative plasma Epstein-Barr virus DNA assay for future biomarker-guided trials in nasopharyngeal carcinoma. Clin Cancer Res 2013; 19: 2208–2215.
Google Scholar |
Crossref |
Medline24.
National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology . Head and neck cancer, version 1,
https://www.nccn.org/professionals/physician_gls/f_guidelines.asp (2021, accessed 9 November 2020).
Google Scholar25.
Chen, YP, Ismaila, N, Chua, MLK, et al. Chemotherapy in combination with radiotherapy for definitive-intent treatment of stage II-IVA nasopharyngeal carcinoma: CSCO and ASCO guideline. J Clin Oncol 2021; 39: 840–859.
Google Scholar26.
Chua, MLK, Wee, JTS, Hui, EP, et al. Nasopharyngeal carcinoma. Lancet 2016; 387: 10022.
Google Scholar |
Crossref27.
Zhang, Y, Chen, L, Hu, GQ, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma. N Engl J Med 2019; 381: 1124–1135.
Google Scholar |
Crossref |
Medline
留言 (0)