Medullary thyroid carcinoma: recent advances in identification, treatment, and prognosis

1. Pereira, M, Williams, VL, Hallanger Johnson, J, et al. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations. Thyroid 2020; 30: 1132–1140.
Google Scholar | Crossref | Medline2. Randle, RW, Balentine, CJ, Leverson, GE, et al. Trends in the presentation, treatment, and survival of patients with medullary thyroid cancer over the past 30 years. Surgery 2017; 161: 137–146.
Google Scholar | Crossref | Medline3. Wells, SA, Asa, SL, Dralle, H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015; 25: 567–610.
Google Scholar | Crossref | Medline4. Filetti, S, Durante, C, Hartl, D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019; 30: 1856–1883.
Google Scholar | Crossref | Medline5. Workman, AD, Soylu, S, Kamani, D, et al. Limitations of preoperative cytology for medullary thyroid cancer: proposal for improved preoperative diagnosis for optimal initial medullary thyroid carcinoma specific surgery. Head Neck 2021; 43: 920–927.
Google Scholar | Crossref | Medline6. Elisei, R, Bottici, V, Luchetti, F, et al. Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disorders. J Clin Endocrinol Metab 2004; 89: 163–168.
Google Scholar | Crossref | Medline7. Verbeek, HHG, de Groot, JWB, Sluiter, WJ, et al. Calcitonin testing for detection of medullary thyroid cancer in people with thyroid nodules. Cochrane Database Syst Rev 2020; 3: CD010159.
Google Scholar | Medline8. Allelein, S, Ehlers, M, Morneau, C, et al. Measurement of basal serum calcitonin for the diagnosis of medullary thyroid cancer. Horm Metab Res 2018; 50: 23–28.
Google Scholar | Crossref | Medline9. Baetu, M, Olariu, CA, Moldoveanu, G, et al. Calcitonin stimulation tests: rationale, technical issues and side effects: a review. Horm Metab Res 2021; 53: 355–363.
Google Scholar | Crossref | Medline10. Niederle, MB, Scheuba, C, Gessl, A, et al. Calcium-stimulated calcitonin—the “new standard” in the diagnosis of thyroid C-cell disease-clinically relevant gender-specific cut-off levels for an “old test.” Biochem Med 2018; 28: 1–12.
Google Scholar | Crossref11. Niederle, MB, Scheuba, C, Riss, P, et al. Early diagnosis of medullary thyroid cancer: are calcitonin stimulation tests still indicated in the era of highly sensitive calcitonin immunoassays? Thyroid 2020; 30: 974–984.
Google Scholar | Crossref | Medline12. Pina, G, Dubois, S, Murat, A, et al. Is basal ultrasensitive measurement of calcitonin capable of substituting for the pentagastrin-stimulation test. Clin Endocrinol 2013; 78: 358–364.
Google Scholar | Crossref | Medline13. Vardarli, I, Weber, M, Weidemann, F, et al. Diagnostic accuracy of routine calcitonin measurement for the detection of medullary thyroid carcinoma in the management of patients with nodular thyroid disease: a meta-analysis. Endocr Connect 2021; 10: 358–370.
Google Scholar | Crossref | Medline14. Fugazzola, L, Di Stefano, M, Censi, S, et al. Basal and stimulated calcitonin for the diagnosis of medullary thyroid cancer: updated thresholds and safety assessment. J Endocrinol Invest 2021; 44: 587–597.
Google Scholar | Crossref | Medline15. Machens, A, Dralle, H. Biomarker-based risk stratification for previously untreated medullary thyroid cancer. J Clin Endocrinol Metab 2010; 95: 2655–2663.
Google Scholar | Crossref | Medline16. Machens, A, Lorenz, K, Dralle, H. Prediction of biochemical cure in patients with medullary thyroid cancer. Br J Surg 2020; 107: 695–704.
Google Scholar | Crossref | Medline17. Machens, A, Lorenz, K, Dralle, H. Time to calcitonin normalization after surgery for node-negative and node-positive medullary thyroid cancer. Br J Surg 2019; 106: 412–418.
Google Scholar | Crossref | Medline18. Barbet, J, Campion, L, Kraeber-Bodéré, F, et al. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab 2005; 90: 6077–6084.
Google Scholar | Crossref | Medline19. Meijer, JAA, le Cessie, S, van den Hout, WB, et al. Calcitonin and carcinoembryonic antigen doubling times as prognostic factors in medullary thyroid carcinoma: a structured meta-analysis. Clin Endocrinol 2010; 72: 534–542.
Google Scholar | Crossref | Medline20. Ito, Y, Miyauchi, A, Kihara, M, et al. Calcitonin doubling time in medullary thyroid carcinoma after the detection of distant metastases keenly predicts patients’ carcinoma death. Endocr J 2016; 63: 663–667.
Google Scholar | Crossref | Medline21. Kahaly, GJ, Algeciras-Schimnich, A, Davis, TE, et al. United States and European multicenter prospective study for the analytical performance and clinical validation of a novel sensitive fully automated immunoassay for calcitonin. Clin Chem 2017; 63: 1489–1496.
Google Scholar | Crossref | Medline22. Elisei, R, Lorusso, L, Piaggi, P, et al. Elevated level of serum carbohydrate antigen 19.9 as predictor of mortality in patients with advanced medullary thyroid cancer. Eur J Endocrinol 2015; 173: 297–304.
Google Scholar | Crossref | Medline23. Lorusso, L, Romei, C, Piaggi, P, et al. Ca19.9 positivity and doubling time are prognostic factors of mortality in patients with advanced medullary thyroid cancer with no evidence of structural disease progression according to response evaluation criteria in solid tumors. Thyroid 2021; 31: 1050–1055.
Google Scholar | Crossref | Medline24. Machens, A, Lorenz, K, Dralle, H. Utility of serum procalcitonin for screening and risk stratification of medullary thyroid cancer. J Clin Endocrinol Metab 2014; 99: 2986–2994.
Google Scholar | Crossref | Medline25. Trimboli, P, Seregni, E, Treglia, G, et al. Procalcitonin for detecting medullary thyroid carcinoma: a systematic review. Endocr Relat Cancer 2015; 22: R157–R164.
Google Scholar | Crossref | Medline26. Karagiannis, AKA, Girio-Fragkoulakis, C, Nakouti, T. Procalcitonin: a new biomarker for medullary thyroid cancer? A systematic review. Anticancer Res 2016; 36: 3803–3810.
Google Scholar | Medline27. Trimboli, P, Giovanella, L. Procalcitonin as marker of recurrent medullary thyroid carcinoma: a systematic review and meta-analysis. Endocrinol Metab 2018; 33: 204–210.
Google Scholar | Crossref28. Romeo, P, Colombo, C, Granata, R, et al. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocr Relat Cancer 2018; 25: 217–231.
Google Scholar | Crossref | Medline29. Wang, L, Kou, H, Chen, W, et al. The diagnostic value of ultrasound in medullary thyroid carcinoma: a comparison with computed tomography. Technol Cancer Res Treat 2020; 19: 1–6.
Google Scholar30. Lai, X, Liu, M, Xia, Y, et al. Hypervascularity is more frequent in medullary thyroid carcinoma compared with papillary thyroid carcinoma. Medicine 2016; 95: e5502.
Google Scholar | Crossref31. Liu, M-J, Liu, Z-F, Hou, Y-Y, et al. Ultrasonographic characteristics of medullary thyroid carcinoma: a comparison with papillary thyroid carcinoma. Oncotarget 2017; 8: 27520–27528.
Google Scholar | Crossref | Medline32. Valderrabano, P, Klippenstein, DL, Tourtelot, JB, et al. New American Thyroid Association sonographic patterns for thyroid nodules perform well in medullary thyroid carcinoma: institutional experience, systematic review, and meta-analysis. Thyroid 2016; 26: 1093–1100.
Google Scholar | Crossref | Medline33. Zhao, J, Zheng, X, Gao, M, et al. Ultrasound features of medullary thyroid cancer as predictors of biological behavior. Cancer Imaging 2021; 21: 10–11.
Google Scholar | Crossref | Medline34. Castroneves, LA, Filho, GC, de Freitas, RMC, et al. Comparison of 68Ga PET/CT to other imaging studies in medullary thyroid cancer: superiority in detecting bone metastases. J Clin Endocrinol Metab 2018; 103: 3250–3259.
Google Scholar | Crossref | Medline35. Matrone, A, Gambale, C, Biagini, M, et al. Ultrasound features and risk stratification systems to identify medullary thyroid carcinoma. Euro J Endocrinol 2021; 185: 193–200.
Google Scholar | Crossref | Medline36. Lee, SW, Shim, SR, Jeong, SY, et al. Comparison of 5 different PET radiopharmaceuticals for the detection of recurrent medullary thyroid carcinoma: a network meta-analysis. Clin Nucl Med 2020; 45: 341–348.
Google Scholar | Crossref | Medline37. Treglia, G, Tamburello, A, Giovanella, L. Detection rate of somatostatin receptor PET in patients with recurrent medullary thyroid carcinoma: a systematic review and a meta-analysis. Hormones 2017; 16: 362–372.
Google Scholar | Medline38. Romero-Lluch, AR, Cuenca-Cuenca, JI, Guerrero-Vázquez, R, et al. Diagnostic utility of PET/CT with 18F-DOPA and 18F-FDG in persistent or recurrent medullary thyroid carcinoma: the importance of calcitonin and carcinoembryonic antigen cutoff. Eur J Nucl Med Mol Imaging 2017; 44: 2004–2013.
Google Scholar | Crossref | Medline39. Brammen, L, Niederle, MB, Riss, P, et al. Medullary thyroid carcinoma: do ultrasonography and F-DOPA-PET/CT influence the initial surgical strategy? Ann Surg Oncol 2018; 25: 3919–3927.
Google Scholar | Crossref | Medline40. Golubić, AT, Pasini Nemir, E, Žuvić, M, et al. The value of 18F-DOPA PET/CT in patients with medullary thyroid carcinoma and increased calcitonin values. Nucl Med Commun 2017; 38: 636–641.
Google Scholar | Crossref | Medline41. Kloos, RT, Eng, C, Evans, DB, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009; 19: 565–612.
Google Scholar | Crossref | Medline42. Giovanella, L, Treglia, G, Iakovou, I, et al. EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2020; 47: 61–77.
Google Scholar | Crossref | Medline43. Castinetti, F, Taïeb, D. Positron emission tomography imaging in medullary thyroid carcinoma: time for reappraisal. Thyroid 2021; 31: 151–155.
Google Scholar | Crossref | Medline44. Ciampi, R, Romei, C, Ramone, T, et al. Genetic landscape of somatic mutations in a large cohort of sporadic medullary thyroid carcinomas studied by next-generation targeted sequencing. iScience 2019; 20: 324–336.
Google Scholar | Crossref | Medline45. Machens, A, Lorenz, K, Weber, F, et al. Lymph node metastasis in hereditary medullary thyroid cancer is independent of the underlying RET germline mutation. Eur J Surg Oncol 2021; 47: 920–923.
Google Scholar | Crossref | Medline46. Saltiki, K, Simeakis, G, Anagnostou, E, et al. Different outcomes in sporadic versus familial medullary thyroid cancer. Head Neck 2019; 41: 154–161.
Google Scholar | Medline47. Voss, RK, Feng, L, Lee, JE, et al. Medullary thyroid carcinoma in MEN2A: ATA moderate- or high-risk RET mutations do not predict disease aggressiveness. J Clin Endocrinol Metab 2017; 102: 2807–2813.
Google Scholar | Crossref | Medline48. Spanheimer, PM, Ganly, I, Chou, JF, et al. Prophylactic lateral neck dissection for medullary thyroid carcinoma is not associated with improved survival. Ann Surg Oncol. Epub ahead of print 21 March 2021. DOI: 10.1245/s10434-021-09683-8.
Google Scholar | Crossref49. Kaserer, K, Scheuba, C, Neuhold, N, et al. Sporadic versus familial medullary thyroid microcarcinoma: a histopathologic study of 50 consecutive patients. Am J Surg Pathol 2001; 25: 1245–1251.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif