Fine structure of the central brain in the octopod Eledone cirrhosa (Lamarck, 1798) (Mollusca–Octopoda)

Abbott NWR, Maddock L (eds) (1995) Cephalopod neurobiology. Oxford University Press, Oxford

Google Scholar 

Abbott NJ, Bundgaard M, Cserr HF (1981) Fine-structural evidence for a glial blood-brain barrier to protein in the cuttlefish, Sepia officinalis. J Physiol Lond 316:P52–P53

Google Scholar 

Abbott N, Bundgaard M, Cserr HF (1985) Brain vascular volume, electrolytes and blood-brain interface in the cuttlefish Sepia officinalis (Cephalopoda). J Physiol 368:197–212

CAS  PubMed  PubMed Central  Google Scholar 

Adelman WJ, Gilbert DL (1990) Electrophysiology and biophysiscs of the squid giant axon. In: Gilbert D, Adelman H, Arnold J (eds) Squid as experimental animals. Plenum Press, New York, pp 93–132

Google Scholar 

Akert K, Sandri C (1976) The fine structure of the perineural endothelium. Cell Tiss Res 165:281–295

CAS  Google Scholar 

Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E et al (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:220–224

CAS  PubMed  PubMed Central  Google Scholar 

Binnington KC, Lane NJ (1980) Perineurial and glial cells in the tick Boophilus microplus (Acarina: Ixodidae); freeze-fracture and tracer studies. J Neurocytol 9:343–362

CAS  PubMed  PubMed Central  Google Scholar 

Boycott B (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc R Soc Lond B Biol Sci 153:503–534

Google Scholar 

Budelmann BU, Young JZ (1984) The statocyst-oculomotor system of Octopus vulgaris: extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor centre in the central nervous system. Phil Trans R Soc Lond B 306:1127. https://doi.org/10.1098/rstb.1984.0084

Article  Google Scholar 

Budelmann BU, Young JZ (1997) Brain pathways of the branchial nerves of Sepia and Loligo. Philos Trans R Soc Lond B(315):345–352

Google Scholar 

Budelrnann B (1995) The cephalopod nervous system: What evolution has made of the molluscan design. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhauser Verlag, Basel, pp 115–138

Google Scholar 

Buresi A, Andouche A, Navet S, Bassaglia Y, Bonnaud-Ponticelli L, Baratte S (2016) Nervous system development in cephalopods: how egg yolkrichness modifies the topology of the mediolateral patterning system. Dev Biol 415:143–156

CAS  PubMed  Google Scholar 

Büssow H (1980) The astrocytes in the retina and optic nerve head of mammals: a special glia for the ganglion. Cell Tiss Res 206(3):367–378

Google Scholar 

Butler A (2008) Evolution of the thalamus: a morphological and functional review. Thalamus Relat Syst 4:35–58

Google Scholar 

Crone C (1986) The blood-brain barrier as a tight epithelium: where is information lacking? Ann N Y Acad Sci 481:174–185

CAS  PubMed  Google Scholar 

David GB, Brown AW, Mallion KB (1961) On the Identity of the ‘Neurofibrils’, ‘Nissl complex’, ‘Golgi Apparatus’, and ‘Trophospongium’ in the Neurones of Vertebrates. Q J Microscop Sci 102(4):481–489

Google Scholar 

de Lange RPJ, van Minnen J (1998) Localization of the neuropeptide APGWamide in gastropod molluscs by in situ hybridization and immunocytochemistry. Gen Comp Endocrinol 109(2):166–174

PubMed  Google Scholar 

Di Cosmo A, Di Cristo C (1998) Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF-amide and GnRH immunoreactivity. J Comput Neurol 398(1):1–12

Google Scholar 

Di Cristo C, De Lisa E, Di Cosmo A (2009) GnRH in the brain and ovary of Sepia officinalis. Peptides 30(3):531–537

PubMed  Google Scholar 

Doreen E Ashhurst, Chapman JA (1962) An electron-microscope study of the cytoplasmic inclusions in the neurones of Locusta migratoria. Q J Microscop Sci 103(2):147–153

Google Scholar 

Dunlop C, King N (2008) Cephalopods: Octopuses and cuttlefish for the home aquarium. Publications, Neptune City

Google Scholar 

Farris SM (2013) Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav Evol 82:9–18

PubMed  Google Scholar 

Fernández-Rueda P, García-Flórez L (2007) Octopus vulgaris (Mollusca:Cephalopoda) fishery management assessment in Asturias (North-West Spain). Fish Res 83:351–354

Google Scholar 

Froesch D (1974) The subpedunculate lobe of the octopus brain: Evidence for dual function. Brain Res 75(2):277–285

CAS  PubMed  Google Scholar 

Gotow T, Hashimoto PH (1984) Plasma membrane organization of astrocytes in elasmobranchs with special reference to the brain barrier system. J Neurocytol 13:727–742

CAS  PubMed  Google Scholar 

Gray EG (1970) The fine structure of the vertical lobe of octopus brain. Philos Trans R Soc Lond B(258):379–394

Google Scholar 

Gray EG, Young JZ (1964) Electron microscopy of synaptic structure of Octopus brain. J Cell Biol 21:87–103

CAS  PubMed  PubMed Central  Google Scholar 

Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

CAS  PubMed  Google Scholar 

Haszprunar G, Wanninger A (2012) Molluscs. Curr Biol 22:510–514

Google Scholar 

Hochner B, Shomrat T (2012) An embodied view of octopus neurobiology. Curr Biol 22:887–892

Google Scholar 

Hochner B, Shomrat T (2014) The neurophysiological basis of learning and memory in an advanced invertebrate—the octopus. In: Darmaillacq A-S, Dickel L, Mather JA (eds) Cephalopods cognition. Cambridge University Press, Cambridge

Google Scholar 

Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM et al (2013) Evolution of bilaterian central nervous systems: a single origin? Evo Dev 4:27

Google Scholar 

Jereb P, Roper CE (eds) (2005) Cephalopods of the World, an Annotated and illustrated Catalogue of Cephalopod Species Known to Date. Publicatios, Neptune City, p 1

Google Scholar 

Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth AJ (2012) Principles of neural science, 5th edn. McGraw-Hill, New York

Google Scholar 

Keay J, Bridgham JT, Thornton JW (2006) The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 147(8):3861–3869

CAS  PubMed  PubMed Central  Google Scholar 

Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659

CAS  PubMed  Google Scholar 

Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2010) Physiology of microglia. Physiol Rev 91:461–553

Google Scholar 

Lane NJ, Swales LS (1976) Interrelationships between Golgi, Gerl and synaptic vesicles in the nerve cells of insect and gastropod ganglia. J Cell Set 22:435–453

CAS  Google Scholar 

Lane NJ, Treherne JE (1972) Studies on perineurial junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system. Tiss Cell 4:427–436

CAS  Google Scholar 

Lane NJ, Harrison JB, Bowerman RF (1981) A vertebrate-like blood-brain barrier, with intraganglionic blood channels and occluding junctions in the scorpion. Tiss Cell 13:557–576

CAS  Google Scholar 

Moussa TA, Banhawy M (1958) Studies on the Nissl substance, neurofibrillae and intracellular trabeculae of insect neurones. J R Microsc Soc 78:114–119

CAS  PubMed  PubMed Central  Google Scholar 

Nakajima Y, Pappas GD, Bennett MVL (1965) The fine structure of the supramedullary neurons of the puffer fish, with special reference to endocellular and pericellular capillaries. Am J Anat 116:471–492

CAS  PubMed  Google Scholar 

Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

CAS  PubMed  Google Scholar 

Nicholls JG, Kuffler SW (1964) Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: ionic composition of glial cells and neurons. J Neurophysiol 27:645–671

CAS  PubMed  Google Scholar 

Nixon M, Young JZ (2003) The Brains and Lives of Cephalopods. Oxford University Press, Oxford

Google Scholar 

Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

CAS  PubMed  Google Scholar 

Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562

CAS  PubMed  PubMed Central  Google Scholar 

Plan, T. (1987). Functional neuroanatomy of sensory-motor lobes of the brain of Octopus vulgaris. Ph.D. thesis, University of Regensburg

Rechenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York

Google Scholar 

Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

CAS  PubMed  PubMed Central  Google Scholar 

Richard L, Saint M, Stanley DC, Che C (1984) The glial cells of insects. Insect Ultrastruct 50:435–475

Google Scholar 

Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comput Neurol 523:1297–1317

CAS  Google Scholar 

Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–342

CAS  PubMed  Google Scholar 

Simons M, Trajkovic K (2006) Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci 119:4381–4389

CAS  PubMed  Google Scholar 

Stephens PR, Young JZ (1969) The glio-vascular system of, cephalopods. Philos Trans R Soc Lon B(255):1–11

Google Scholar 

Sun B, Tsai S (2011) Agonadotropin-releasing hormone-like molecule modulates the activity of diverse central neurons in a gastropod mollusk, Aplysia californica. Front Endocrinol 2(36):1–8

Google Scholar 

Verkhratsky A, Parpura V, Rodriguez JJ (2010) Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net. Brain Res Rev 66(1–2):133–151

PubMed  Google Scholar 

Waddell S (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23:324–329

CAS  PubMed  Google Scholar 

Wentzell MM, Martínez-Rubio C, Miller MW, Murphy AD (1987) Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22:381–394

Google Scholar 

Williamson R, Chrachri A (2004) Cephalopod neural networks. Neurosignals 13:87–98

留言 (0)

沒有登入
gif