Evidence for the cholinergic markers ChAT and vAChT in sensory cells of the developing antennal nervous system of the desert locust Schistocerca gregaria

Banzai K, Adachi T, Izumi S (2015) Comparative analyses of the cholinergic locus of ChAT and VAChT and its expression in the silkworm Bombyx mori. Comp Biochem Physiol B 185:1–9

CAS  PubMed  Google Scholar 

Bentley D, Keshishian H, Shankland M, Torian-Raymond A (1979) Quantitative staging of embryonic development of the locust, Schistocerca nitens. J Embryol Exp Morphol 54:47–74

CAS  PubMed  Google Scholar 

Blagburn JM, Sattelle DB (1987) Presynaptic depolarization mediates presynaptic inhibition at a synapse between an identified mechanosensory neurone and giant intemeurone 3 in the first instar cockroach, Periplaneta americana. J Exp Biol 127:135–157

Google Scholar 

Boppana S, Kendall N, Akinrinsola O, White D, Patel K, Lawal H (2017) Immunolocalization of the vesicular acetylcholine transporter in larval and adult Drosophila neurons. Neurosci Lett 643:76–83

CAS  PubMed  PubMed Central  Google Scholar 

Boyan GS (1988) Presynaptic inhibition of identified wind-sensitive afferents in the cercal system of the locust. J Neurosci 8:2748–2757

CAS  PubMed  PubMed Central  Google Scholar 

Boyan GS, Ball EE (1993) The locust, Drosophila, and neuronal homology. Prog Neurobiol 41:657–682

CAS  PubMed  Google Scholar 

Boyan GS, Liu Y (2016) Development of the neurochemical architecture of the central complex. Front Behav Neurosci 10:167

PubMed  PubMed Central  Google Scholar 

Boyan G, Williams L, Herbert Z (2010) Multipotent neuroblasts generate a biochemical neuroarchitecture in the central complex of the locust Schistocerca gregaria. Cell Tissue Res 340:13–28

PubMed  Google Scholar 

Buchner E, Buchner S, Burg MG, Hofbauer A, Pak WL, Pollack I (1993) Histamine is a major mechanosensory neurotransmitter candidate in Drosophila melanogaster. Cell Tissue Res 273:119–125

CAS  PubMed  Google Scholar 

Casares F, Mann RS (1998) Control of antennal versus leg development in Drosophila. Nature 392:723–726

CAS  PubMed  Google Scholar 

Chapman RF (2002) Development of phenotypic differences in sensillum populations on the antennae of a locust, Schistocerca americana. J Morphol 254:186–194

CAS  PubMed  Google Scholar 

Chapman RF, Greenwood M (1986) Changes in distribution and abundance of antennal sensilla during growth of Locusta migratoria L. (Orthoptera: Acrididae). Int J Insect Morphol Embryol 15:83–96

Google Scholar 

Deshpande S, Freyberg Z, Lawal HO, Krantz DE (2020) Vesicular neurotransmitter transporters in Drosophila melanogaster. BBA Biomembranes. https://doi.org/10.1016/j.bbamem.2020.183308

Article  PubMed  Google Scholar 

Ehrhardt E, Kleele T, Boyan GS (2015) A method for immunolabeling neurons in intact cuticularized insect appendages. Dev Genes Evol 225:187–194

CAS  PubMed  Google Scholar 

Ehrhardt EE, Graf P, Kleele T, Liu Y, Boyan GS (2016) Fates of identified pioneer cells in the developing antennal nervous system of the locust Schistocerca gregaria. Arthr Struct Dev 45:23–30

Google Scholar 

Fabian-Fine R, Anderson CM, Roush MA, Johnson JAG, Liu H, French AS, Torkkeli PH (2017) The distribution of cholinergic neurons and their co-localization with FMRFamide, in central and peripheral neurons of the spider Cupiennius salei. Cell Tissue Res 370:71–88

CAS  PubMed  PubMed Central  Google Scholar 

Geffard M, Vieillemaringe J, Heinrich-Rock A-M, Duris P (1985) Anti-acetylcholine antibodies and first immunocytochemical application in insect brain. Neurosci Lett 57:1–6

CAS  PubMed  Google Scholar 

Gewecke M (1972) Bewegungsmechanismen und Gelenkrezeptoren der Antennen von Locusta migratoria L. Z Morph Tiere 71:128–149

Google Scholar 

Goodman CS, Spitzer NC (1980) Embryonic development of neurotransmitter receptors in locusts. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 195–207

Google Scholar 

Goodman CS, O’Shea M, McCaman R, Spitzer NC (1979) Embryonic development of identified neurons: temporal pattern of morphological and biochemical differentiation. Science 204:1219–1222

CAS  PubMed  Google Scholar 

Heinrich R, Hedwig B, Elsner N (1997) Cholinergic activation of stridulatory behaviour in the locust Omocestus viridulus, (L.). J Exp Biol 200:1327–1337

CAS  PubMed  Google Scholar 

Hermsen B, Stetzer E, Thees R, Heiermann R, Schrattenholz A, Ebbinghaus U, Kretschmer A, Methfessel C, Reinhardt S, Maelicke A (1998) Neuronal nicotinic receptors in the locust Locusta migratoria. Cloning and expression. J Biol Chem 273:18394–18404

CAS  PubMed  Google Scholar 

Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209

CAS  PubMed  Google Scholar 

Jan LY, Jan YN (1982) Antibodies to horseradish-peroxidase as specific neuronal markers in Drosophila and locust embryos. Proc Natl Acad Sci USA 79:2700–2704

CAS  PubMed  Google Scholar 

Jia H-G, Yamuy J, Sampogna S, Morales FR, Chase MH (2003) Colocalization of γ-aminobutyric acid and acetylcholine in neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat: a light and electron microscopic study. Brain Res 992:205–219

CAS  PubMed  Google Scholar 

Kitamoto T, Wang W, Salvaterra PM (1998) Structure and organization of the Drosophila cholinergic locus. J Biol Chem 273:2706–2713

CAS  PubMed  Google Scholar 

Knipper M, Strotmann J, Mädler U, Kahle C, Breer H (1989) Monoclonal antibodies against the high affinity choline transport system. Neurochem Int 14:217–222

CAS  PubMed  Google Scholar 

Kunst M, Pförtner R, Aschenbrenner K, Heinrich R (2011) Neurochemical architecture of the central complex related to its function in the control of locust acoustic communication. PLoS ONE 6:e25613

CAS  PubMed  PubMed Central  Google Scholar 

Leitch B, Watkins BL, Burrows M (1993) Distribution of acetylcholine receptors in the central nervous system of adult locusts. J Comp Neurol 334:47–58

CAS  PubMed  Google Scholar 

Leitinger G, Simmons PJ (2000) Cytochemical evidence that acetylcholine is a neurotransmitter of neurons that make excitatory and inhibitory outputs in the locust ocellar visual system. J Comp Neurol 416:345–355

CAS  PubMed  Google Scholar 

Lutz EM, Tyrer NM (1987) Immunohistochemical localization of choline acetyltransferase in the central nervous system of the locust. Brain Res 407:173–179

CAS  PubMed  Google Scholar 

Meier T, Reichert H (1991) Serially homologous development of the peripheral nervous system in the mouthparts of the locust. J Comp Neurol 305:201–214

CAS  PubMed  Google Scholar 

Meier T, Chabaud F, Reichert H (1991) Homologous patterns in the embryonic development of the peripheral nervous system in the locust Schistocerca gregaria and the fly Drosophila melanogaster. Development 112:241–253

CAS  PubMed  Google Scholar 

Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68:1–84

PubMed  Google Scholar 

Ochieng S, Hallberg E, Hansson B (1998) Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell Tissue Res 291:525–536

CAS  PubMed  Google Scholar 

Persson MGS, Nässel DR (1999) Neuropeptides in insect sensory neurones: tachykinin-, FMRFamide- and allatotropin-related peptides in terminals of locust thoracic sensory afferents. Brain Res 816:131–141

CAS  PubMed  Google Scholar 

Python F, Stocker RF (2002) Immunoreactivity against choline acetyltransferase, γ-aminobutyric acid, histamine, octopamine, and serotonin in the larval chemosensory system of Drosophila melanogaster. J Comp Neurol 453:157–167

CAS  PubMed  Google Scholar 

Rind FC, Leitinger G (2000) Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine. J Comp Neurol 423:389–401

CAS  PubMed  Google Scholar 

Rind FC, Simmons PJ (1998) Local circuit for the computation of object approach by an identified visual neuron in the locust. J Comp Neurol 395:405–415

CAS  PubMed  Google Scholar 

Salvaterra PM, Kitamoto T (2001) Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Gene Expr Patterns 1:73–82

CAS  Google Scholar 

Sanes JR, Hildebrand JG (1976) Acetylcholine and its metabolic enzymes in developing antennae of the moth, Manduca sexta. Dev Biol 52:105–120

CAS  PubMed  Google Scholar 

Sanes JR, Prescott DJ, Hildebrand JG (1977) Cholinergic neurochemical development of normal and deafferented antennal lobes during metamorphosis of the moth, Manduca sexta. Brain Res 119:389–402

CAS  PubMed  Google Scholar 

Showell SS, Martinez Y, Gondolfo S, Boppana S, Lawal HO (2020) Overexpression of the vesicular acetylcholine transporter disrupts cognitive performance and causes age-dependent locomotion decline in Drosophila. Mol Cell Neurosci 105:103483

CAS  PubMed  Google Scholar 

Slifer EH, Prestage JJ, Beams HW (1959) The chemoreceptors and other sense organs on the antennal flagellum of the locust (Orthoptera; Acridiadae). J Morphol 105:145–191

CAS  PubMed  Google Scholar 

Song HJ, Ming GL, Fon E, Bellocchio E, Edwards RH, Poo MM (1997) Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron 18:815–826

CAS  PubMed  Google Scholar 

Soustelle L, Besson MT, Rival T, Birman S (2002) Terminal glial differentiation involves regulated expression of the excitatory amino acid transporters in the Drosophila embryonic CNS. Dev Biol 248:294–306

CAS  PubMed  Google Scholar 

Stevenson PA, Kutsch W (1986) Basic circuitry of an adult-specific motor program completed with embryogenesis. Naturwissenschaften 73:741–743

Google Scholar 

Thompson KJ, Siegler MVS (1991) Anatomy and physiology of spiking local and intersegmental interneurons in the median neuroblast lineage of the locust. J Comp Neurol 305:659–675

CAS 

留言 (0)

沒有登入
gif