Pharmacological characterization of the forced swim test in Drosophila melanogaster

Abrahao KP, Salinas AG, Lovinger DM (2017) Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron 96:1223–1238. https://doi.org/10.1016/j.neuron.2017.10.032

CAS  Article  PubMed  PubMed Central  Google Scholar 

Andersen J, Stuhr-Hansen N, Zachariassen LG et al (2014) Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (Prozac). Mol Pharmacol 85:703–714. https://doi.org/10.1124/mol.113.091249

CAS  Article  PubMed  Google Scholar 

Andersen J, Taboureau O, Hansen KB et al (2009) Location of the antidepressant binding site in the serotonin transporter. J Biol Chem 284:10276–10284. https://doi.org/10.1074/jbc.M806907200

CAS  Article  PubMed  PubMed Central  Google Scholar 

Araujo SM, Poetini MR, Bortolotto VC et al (2018) Chronic unpredictable mild stress-induced depressive-like behavior and dysregulation of brain levels of biogenic amines in Drosophila melanogaster. Behav Brain Res 351:104–113. https://doi.org/10.1016/j.bbr.2018.05.016

CAS  Article  PubMed  Google Scholar 

Bainton RJ, Tsai LTY, Singh CM et al (2000) Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 10:187–194

CAS  Article  Google Scholar 

Baumeister AA, Hawkins MF, Uzelac SM (2003) The myth of reserpine-induced depression: role in the historical development of the monoamine hypothesis. J Hist Neurosci 12:207–220. https://doi.org/10.1076/jhin.12.2.207.15535

Article  PubMed  Google Scholar 

Beers MH, Passman LJ (1990) Antihypertensive medications and depression. Drugs 40:792–799. https://doi.org/10.2165/00003495-199040060-00003

CAS  Article  PubMed  Google Scholar 

Benmansour S, Cecchi M, Morilak DA et al (1999) Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494–10501. https://doi.org/10.1523/JNEUROSCI.19-23-10494.1999

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bogdanova OV, Kanekar S, D’Anci KE, Renshaw PF (2013) Factors influencing behavior in the forced swim test. Physiol Behav 118:227–239. https://doi.org/10.1016/j.physbeh.2013.05.012

CAS  Article  PubMed  PubMed Central  Google Scholar 

Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 94:147–160. https://doi.org/10.1007/BF00176837

CAS  Article  PubMed  Google Scholar 

Borue X, Cooper S, Hirsh J et al (2009) Quantitative evaluation of serotonin release and clearance in Drosophila. J Neurosci Methods 179:300–308. https://doi.org/10.1016/j.jneumeth.2009.02.013

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cannizzaro G, Flugy A, Cannizzaro C et al (1993) Effects of desipramine and alprazolam in the forced swim test in rats after long-lasting termination of chronic exposure to picrotoxin and pentylenetetrazol. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 3:477–484. https://doi.org/10.1016/0924-977x(93)90272-n

CAS  Article  Google Scholar 

Ciccocioppo R, Panocka I, Froldi R et al (1999) Antidepressant-like effect of ethanol revealed in the forced swimming test in Sardinian alcohol-preferring rats. Psychopharmacology 144:151–157. https://doi.org/10.1007/s002130050988

CAS  Article  PubMed  Google Scholar 

Cryan JF, Page ME, Lucki I (2005) Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 182:335–344. https://doi.org/10.1007/s00213-005-0093-5

CAS  Article  PubMed  Google Scholar 

Dalla C, Pitychoutis PM, Kokras N, Papadopoulou-Daifoti Z (2011) Sex differences in response to stress and expression of depressive-like behaviours in the rat. Curr Top Behav Neurosci 8:97–118. https://doi.org/10.1007/7854_2010_94

CAS  Article  PubMed  Google Scholar 

Descarries L, Riad M (2012) Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT. Philos Trans R Soc B Biol Sci 367:2416–2425. https://doi.org/10.1098/rstb.2011.0361

CAS  Article  Google Scholar 

Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121:66–72. https://doi.org/10.1007/BF02245592

CAS  Article  PubMed  Google Scholar 

Estrada-Camarena E, Contreras CM, Saavedra M et al (2002) Participation of the lateral septal nuclei (LSN) in the antidepressant-like actions of progesterone in the forced swimming test (FST). Behav Brain Res 134:175–183. https://doi.org/10.1016/s0166-4328(02)00023-2

CAS  Article  PubMed  Google Scholar 

Fernández-Teruel A, Escorihuela RM, Boix F et al (1990) Imipramine and desipramine decrease the GABA-stimulated chloride uptake, and antigabaergic agents enhance their action in the forced swimming test in rats. Neuropsychobiology 23:147–152. https://doi.org/10.1159/000119442

Article  PubMed  Google Scholar 

Fernández-Teruel A, Escorihuela RM, Boix F, Tobeña A (1990) Picrotoxin changes the effects of imipramine and desipramine in rats in the forced swimming test. Eur J Pharmacol 181:35–41. https://doi.org/10.1016/0014-2999(90)90242-x

Article  PubMed  Google Scholar 

Getachew B, Tizabi Y (2019) Both ketamine and NBQX attenuate alcohol-withdrawal induced depression in male rats. J Drug Alcohol Res. https://doi.org/10.4303/jdar/236069

Article  PubMed  PubMed Central  Google Scholar 

Gil M, Marti J, Armario A (1992) Inhibition of catecholamine synthesis depresses behavior of rats in the holeboard and forced swim tests: influence of previous chronic stress. Pharmacol Biochem Behav 43:597–601. https://doi.org/10.1016/0091-3057(92)90196-m

CAS  Article  PubMed  Google Scholar 

Greer CL, Grygoruk A, Patton DE et al (2005) A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. J Neurobiol 64:239–258. https://doi.org/10.1002/neu.20146

CAS  Article  PubMed  Google Scholar 

Hales KG, Korey CA, Larracuente AM, Roberts DM (2015) Genetics on the fly: a primer on the Drosophila model system. Genetics 201:815–842. https://doi.org/10.1534/genetics.115.183392

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hao Y, Ge H, Sun M, Gao Y (2019) Selecting an appropriate animal model of depression. Int J Mol Sci 20:4827. https://doi.org/10.3390/ijms20194827

CAS  Article  PubMed Central  Google Scholar 

Hirani K (2002) Behavioral action of ethanol in Porsolt’s forced swim test: modulation by 3alpha-hydroxy-5alpha-pregnan-20-one. Neuropharmacology 43:1339–1350. https://doi.org/10.1016/S0028-3908(02)00330-1

CAS  Article  PubMed  Google Scholar 

Jain NS, Kannamwar U, Verma L (2017) Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system. Psychopharmacology 234:447–459. https://doi.org/10.1007/s00213-016-4478-4

CAS  Article  PubMed  Google Scholar 

Kara NZ, Stukalin Y, Einat H (2018) Revisiting the validity of the mouse forced swim test: Systematic review and meta-analysis of the effects of prototypic antidepressants. Neurosci Biobehav Rev 84:1–11. https://doi.org/10.1016/j.neubiorev.2017.11.003

CAS  Article  PubMed  Google Scholar 

Kaster MP, Raupp I, Binfaré RW et al (2007) Antidepressant-like effect of lamotrigine in the mouse forced swimming test: evidence for the involvement of the noradrenergic system. Eur J Pharmacol 565:119–124. https://doi.org/10.1016/j.ejphar.2007.03.003

CAS  Article  PubMed  Google Scholar 

Kasture AS, Hummel T, Sucic S, Freissmuth M (2018) Big lessons from tiny flies: Drosophila melanogaster as a model to explore dysfunction of dopaminergic and serotonergic neurotransmitter systems. Int J Mol Sci. https://doi.org/10.3390/ijms19061788

Article  PubMed  PubMed Central  Google Scholar 

Kliethermes CL (2011) An instant fly medium and a convenient method to dispense it. Drosoph Inf Serv 94:132

Google Scholar 

Lee KM, Coehlo M, McGregor HA et al (2015) Binge alcohol drinking elicits persistent negative affect in mice. Behav Brain Res 291:385–398. https://doi.org/10.1016/j.bbr.2015.05.055

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lovinger DM, Roberto M (2013) Synaptic effects induced by alcohol. Curr Top Behav Neurosci 13:31–86. https://doi.org/10.1007/7854_2011_143

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lucki I, Singh A, Kreiss DS (1994) Antidepressant-like behavioral effects of serotonin receptor agonists. Neurosci Biobehav Rev 18:85–95. https://doi.org/10.1016/0149-7634(94)90039-6

CAS  Article  PubMed  Google Scholar 

Malutan T, McLean H, Caveney S, Donly C (2002) A high-affinity octopamine transporter cloned from the central nervous system of cabbage looper Trichoplusia ni. Insect Biochem Mol Biol 32:343–357. https://doi.org/10.1016/s0965-1748(01)00114-x

CAS  Article  PubMed  Google Scholar 

Martín F, Alcorta E (2017) Novel genetic approaches to behavior in Drosophila. J Neurogenet 31:288–299. https://doi.org/10.1080/01677063.2017.1395875

CAS  Article  PubMed  Google Scholar 

Molendijk ML, de Kloet ER (2015) Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology 62:389–391. https://doi.org/10.1016/j.psyneuen.2015.08.028

Article  PubMed  Google Scholar 

Molendijk ML, de Kloet ER (2019) Coping with the forced swim stressor: current state-of-the-art. Behav Brain Res 364:1–10. https://doi.org/10.1016/j.bbr.2019.02.005

Article  PubMed  Google Scholar 

Neckameyer WS, Nieto-Romero AR (2015) Response to stress in Drosophila is mediated by gender, age and stress paradigm. Stress 18:254–266. https://doi.org/10.3109/10253890.2015.1017465

留言 (0)

沒有登入
gif