Identification and characterization of a UbK family kinase in Porphyromonas gingivalis which phosphorylates the RprY response regulator

Phosphorylation of proteins is a key component of bacterial signaling systems which can control important functions such as community development and virulence. We report here the identification of a Ubiquitous bacterial Kinase (UbK) family member, designated UbK1, in the anaerobic periodontal pathogen, Porphyromonas gingivalis. UbK1 contains conserved SPT/S, Hanks-type HxDxYR, EW and Walker A motifs, and a mutation analysis established the Walker A domain and the Hanks-type domain as required for both autophosphorylation and transphosphorylation. UbK1 autophosphorylates on the proximal serine in the SPT/S domain as well as the tyrosine residue within the HxDxYR domain and the tyrosine residue immediately proximal, indicating both serine/threonine and tyrosine specificity. The orphan two component system (TCS) response regulator RprY was phosphorylated on Y41 in the receiver domain by UbK1. The ubk1 gene is essential in P. gingivalis; however, overexpression of UbK1 showed that UbK1-mediated phosphorylation of RprY functions predominantly to augment its properties as a transcriptional enhancer. These results establish that P. gingivalis possesses an active UbK kinase in addition to a previously described Bacterial Tyrosine (BY) family kinase. The response regulator RprY is identified as the first transcriptional regulator controlled by a UbK enzyme.

This article is protected by copyright. All rights reserved

留言 (0)

沒有登入
gif