Advances in gene therapy and their application to skin diseases: A review

Anderson W.F.

Human gene therapy.

Science. 1992; 256: 808-813View in Article Scopus (679) PubMed Crossref Google ScholarCavazzana-Calvo M. Hacein-Bey S. de Saint Basile G. et al.

Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.

Science. 2000; 288: 669-672View in Article Scopus (2117) PubMed Crossref Google ScholarBaum C. Düllmann J. Li Z. et al.

Side effects of retroviral gene transfer into hematopoietic stem cells.

Blood. 2003; 101: 2099-2114View in Article Scopus (339) PubMed Crossref Google ScholarRaper S.E. Yudkoff M. Chirmule N. et al.

A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency.

Hum. Gene Ther. 2002; 13: 163-175View in Article Scopus (300) PubMed Crossref Google ScholarBrenner S. Malech H.L.

Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy.

Biochim. Biophys. Acta. 2003; 1640: 1-24View in Article Scopus (56) PubMed Crossref Google ScholarElsner C. Bohne J.

The retroviral vector family: something for everyone.

Virus Genes. 2017; 53: 714-722View in Article Scopus (12) PubMed Crossref Google ScholarKurian K.M. Watson C.J. Wyllie A.H.

Retroviral vectors.

Mol. Pathol. 2000; 53: 173-176View in Article Scopus (38) PubMed Crossref Google ScholarShinkuma S. McMillan J.R. Shimizu H.

Ultrastructure and molecular pathogenesis of epidermolysis bullosa.

Clin. Dermatol. 2011; 29: 412-419View in Article Scopus (31) PubMed Abstract Full Text Full Text PDF Google ScholarMavilio F. Pellegrini G. Ferrari S. et al.

Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells.

Nat. Med. 2006; 12: 1397-1402View in Article Scopus (458) PubMed Crossref Google ScholarDe Rosa L. Carulli S. Cocchiarella F. et al.

Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa.

Stem Cell Rep. 2014; 2: 1-8View in Article Scopus (74) PubMed Abstract Full Text Full Text PDF Google ScholarBauer J.W. Koller J. Murauer E.M. et al.

Closure of a large chronic wound through transplantation of gene-corrected epidermal stem cells.

J. Invest. Dermatol. 2017; 137: 778-781View in Article Scopus (57) PubMed Abstract Full Text Full Text PDF Google ScholarHirsch T. Rothoeft T. Teig N. et al.

Regeneration of the entire human epidermis using transgenic stem cells.

Nature. 2017; 551: 327-332View in Article Scopus (287) PubMed Crossref Google ScholarEichstadt S. Barriga M. Ponakala A. et al.

Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa.

JCI Insight. 2019; 4e130554View in Article Scopus (23) PubMed Crossref Google ScholarSiprashvili Z. Nguyen N.T. Gorell E.S. et al.

Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa.

JAMA. 2016; 316: 1808-1817View in Article Scopus (92) PubMed Crossref Google ScholarDemeulemeester J. De Rijck J. Gijsbers R. Debyser Z.

Retroviral integration: site matters: mechanisms and consequences of retroviral integration site selection.

BioEssays. 2015; 37: 1202-1214View in Article Scopus (40) PubMed Crossref Google ScholarFinkelshtein D. Werman A. Novick D. Barak S. Rubinstein M.

LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus.

Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 7306-7311View in Article Scopus (262) PubMed Crossref Google ScholarMalim M.H. Hauber J. Le S.Y. Maizel J.V. Cullen B.R.

The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA.

Nature. 1989; 338: 254-257View in Article Scopus (919) PubMed Crossref Google ScholarWu C. Dunbar C.E.

Stem cell gene therapy: The risks of insertional mutagenesis and approaches to minimize genotoxicity.

Front. Med. 2011; 5: 356-371View in Article Scopus (66) PubMed Crossref Google ScholarJacków J. Titeux M. Portier S. et al.

Gene-corrected fibroblast therapy for recessive dystrophic epidermolysis bullosa using a self-inactivating COL7A1 retroviral vector.

J. Invest. Dermatol. 2016; 136: 1346-1354View in Article Scopus (27) PubMed Abstract Full Text Full Text PDF Google ScholarDi W.L. Lwin S.M. Petrova A. et al.

Generation and clinical application of gene-modified autologous epidermal sheets in netherton syndrome: lessons learned from a Phase 1 trial.

Hum. Gene Ther. 2019; 30: 1067-1078View in Article Scopus (8) PubMed Crossref Google ScholarKishibe M.

Physiological and pathological roles of kallikrein-related peptidases in the epidermis.

J. Dermatol. Sci. 2019; 95: 50-55View in Article Scopus (12) PubMed Abstract Full Text Full Text PDF Google ScholarGaucher S. Lwin S.M. Titeux M. et al.

EBGene trial: patient preselection outcomes for the European GENEGRAFT ex vivo phase I/II gene therapy trial for recessive dystrophic epidermolysis bullosa.

Br. J. Dermatol. 2020; 182: 794-797View in Article Scopus (8) PubMed Crossref Google ScholarHas C. South A. Uitto J.

Molecular Therapeutics in development for epidermolysis bullosa: Update.

Mol. Diagn. Ther. 2020; 2020: 299-309View in Article Scopus (13) Crossref Google ScholarLwin S.M. Syed F. Di W.L. et al.

Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa.

JCI Insight. 2019; 4e126243View in Article Scopus (19) PubMed Crossref Google ScholarZhang C. Zhou D.

Adenoviral vector-based strategies against infectious disease and cancer.

Hum. Vaccin. Immunother. 2016; 12: 2064-2074View in Article Scopus (52) PubMed Crossref Google ScholarHammer S.M. Sobieszczyk M.E. Janes H. et al.

Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine.

N. Engl. J. Med. 2013; 369: 2083-2092View in Article Scopus (386) PubMed Crossref Google ScholarLedgerwood J.E. DeZure A.D. Stanley D.A. et al.

Chimpanzee adenovirus vector Ebola vaccine.

N. Engl. J. Med. 2017; 376: 928-938View in Article Scopus (194) PubMed Crossref Google ScholarDummer R. Rochlitz C. Velu T. et al.

Intralesional adenovirus-mediated interleukin-2 gene transfer for advanced solid cancers and melanoma.

Mol. Ther. 2008; 16: 985-994View in Article Scopus (39) PubMed Abstract Full Text Full Text PDF Google ScholarStewart A.K. Lassam N.J. Quirt I.C. et al.

Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: Results of a phase 1 clinical trial.

Gene Ther. 1999; 6: 350-363View in Article Scopus (126) PubMed Crossref Google ScholarDummer R. Bergh J. Karlsson Y. et al.

Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumours.

Cancer Gene Ther. 2000; 7: 1069-1076View in Article Scopus (42) PubMed Crossref Google ScholarDummer R. Hassel J.C. Fellenberg F. et al.

Adenovirus-mediated intralesional interferon-gamma gene transfer induces tumour regressions in cutaneous lymphomas.

Blood. 2004; 104: 1631-1638View in Article Scopus (95) PubMed Crossref Google ScholarDummer R. Eichmüller S. Gellrich S. et al.

Phase II clinical trial of intratumoral application of TG1042 (adenovirus-interferon-gamma) in patients with advanced cutaneous T-cell lymphomas and multilesional cutaneous B-cell lymphomas.

Mol. Ther. 2010; 18: 1244-1247View in Article Scopus (29) PubMed Abstract Full Text Full Text PDF Google ScholarNaso M.F. Tomkowicz B. Perry 3rd, W.L. Strohl W.R.

Adeno-associated virus (AAV) as a vector for gene therapy.

BioDrugs. 2017; 31: 317-334View

留言 (0)

沒有登入
gif