Park T, Khang S, Jeong H, Koo K, Lee J, Shin J, Kang HC: Deep learning segmentation in 2D X-ray images and non-rigid registration in multi-modality images of coronary arteries. Diagnostics (Basel) 12:778, 2022.
Ghaffari M, Hsu CY, Linninger AA: Automatic reconstruction and generation of structured hexahedral mesh for non-planar bifurcations in vascular networks. Computer Aided Chemical Engineering 37:635-640, 2015
Chen YC, Lin YC, Wang CP, Lee CY, Lee WJ, Wang TD, Chen CM: Coronary artery segmentation in cardiac CT angiography using 3D multi-channel U-net. arXiv. https://doi.org/10.48550/arXiv.1907.12246, July 29, 2019
Asaduddin M, Roh HG, Kim HJ, Kim EY, Park SH: Perfusion maps acquired from dynamic angiography MRI using deep learning approaches. J Magn Reson Imaging 57:456-469, 2023
Kaba S, Haci H, Isin A, Ilhan A, Conkbayir C. The application of deep learning for the segmentation and classification of coronary arteries. Diagnostics 13:2274, 2023
Article PubMed PubMed Central Google Scholar
Iyer K, Najarian CP, Fattah AA, Arthurs CJ, Soroushmehr SMR, Subban V, Sankardas MA, Nadakuditi RR, Nallamothu BK, Figueroa CA: AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography. Sci Rep 11:18066, 2021
Article CAS PubMed PubMed Central Google Scholar
Butoi VI, Gonzalez Ortiz JJ, Ma T, Sabuncu MR, Guttag J, Dalca AV: UniverSeg: universal medical image segmentation. In: 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 21381–21394, 2023
Lopes I, Vu TH, Charette R: Cross-task attention mechanism for dense multi-task learning. In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, 2328–2337, 2023
Aydin OU, Taha AA, Hilbert A, Khalil AA, Galinovic I, Fiebach JB, Frey D, Madai VI: On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking. Eur Radiol Exp 5:4, 2021
Article PubMed PubMed Central Google Scholar
Isensee, F., Jaeger, P.F., Kohl, S.A.A. et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18, 203–211 (2021).
Article CAS PubMed Google Scholar
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al: Segment Anything.arXiv:2304.02643, 2023.
Weiyi Xie, Nathalie Willems, Shubham Patil, Yang Li, Mayank Kumar: SAM Fewshot Finetuning for Anatomical Segmentation in Medical Images. arXiv: 2407.04651v1, 05 Jul 2024
Sener O, Koltun V: Multi-task learning as multi-objective optimization. Advances in Neural Information Processing Systems 31:527-538, 2018
Pinal-Garcia DF, Nuno-Guzman CM, Gonzalez-Gonzalez ME, Ibarra-Hurtado TR: The celiac trunk and its anatomical variations: a cadaveric study. J Clin Med Res 10:321-329, 2018
Article PubMed PubMed Central Google Scholar
Drobnjak D, Munch IC, Glümer C, Faerch K, Kessel L, Larsen M, Veiby NC: Retinal vessel diameters and their relationship with cardiovascular risk and all-cause mortality in the Inter99 Eye Study: a 15-year follow-up. J Ophthalmol 2016:6138659, 2016
PubMed PubMed Central Google Scholar
Burbank FH, Brody WR, Bradley BR: Effect of volume and rate of contrast medium injection on intravenous digital subtraction angiographic contrast medium curves. J Am Coll Cardiol 4:308-315, 1984
Article CAS PubMed Google Scholar
Wang X, Hao Y, Duan Y, Yang D: A deep learning approach to remove contrast from contrast-enhanced CT for proton dose calculation. J Appl Clin Med Phys 25:e14266, 2024
Article PubMed PubMed Central Google Scholar
Sriwong K, Kerdprasop K, Kerdprasop N: The study of noise effect on CNN-based deep learning from medical images. Int J Mach Learn Comput 11:202-207, 2021
Aberle D, Charles H, Hodak S, O'Neill D, Oklu R, Deipolyi AR: Optimizing care for the obese patient in interventional radiology. Diagn Interv Radiol 23:156-162, 2017
留言 (0)