Ghosh, A. K., Sarkar, A., Brindisi, M. (2018). The Curtius rearrangement: Mechanistic insight and recent applications in natural product syntheses. Org. Biomol. Chem., 16, 2006–2027. doi: 10.1039/C8OB00138C
Wu, Z., Zeng, X. (2022). Curtius-Type Rearrangement of Sulfinyl Azides: A Matrix Isolation and Computational Study. J. Phys. Chem. A., 126(27), 4367–4375. doi: 10.1021/acs.jpca.2c02469
McCulla, R. D., Gohar, G. A., Hadad, C. M., Platz, M. S. (2007). Computational Study of the Curtius-like Rearrangements of Phosphoryl, Phosphinyl, and Phosphinoyl Azides and Their Corresponding Nitrenes. J. Org. Chem., 72(25), 9426–9438. doi: 10.1021/jo0711687
Tokar, A., Chihvintseva, O., Mirjanić, D. (2024). The Quantum-Chemical Aspects of Structuring for Some Aramide-Type Polymer Systems with Hetaryl Fragments. In: Karabegovic, I., Kovačević, A., Mandzuka, S. (eds.) New Technologies, Development and Application VII. NT 2024. Lecture Notes in Networks and Systems, 1070, 589–596. Springer, Cham. doi: 10.1007/978-3-031-66271-3_63
Tokar, A., Chigvintseva, O. (2021). The quantum-chemical and spectral criteria for hydrogen bonding efficiency in structural analysis of aramides. Chem. Chem. Technol., 15(1), 9–15. doi: 10.23939/chcht15.01.009
Guo, Y., Muuronen, M., Lucas, F., Sijbesma, R. P., Tomović, Ž. (2023). Catalysts for Isocyanate Cyclotrimerization. ChemCatChem, 15(10), e202201362. doi: 10.1002/cctc.202201362
Li, Ch., Zhao, W., He, J., Zhang, Y. (2019). Highly efficient cyclotrimerization of isocyanates by N-Heterocyclic Olefins under bulk condition. Chem. Commun., 55, 12563–12566. doi: 10.1039/C9CC06402H
Wolf, M. E., Vandezande, J. E., Schaefer, H. F. (2021). Catalyzed Reaction of Isocyanates (RNCO) with Water. Phys. Chem. Chem. Phys., 23, 18535–18546. doi: 10.1039/D1CP03302F
Ruipérez, F. (2019). Application of quantum chemical methods in polymer chemistry. Int. Rev. Phys. Chem., 38(3–4), 343–403. doi: 10.1080/0144235X.2019.1677062
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. (2004). Gaussian 03 (Revision E.01). Gaussian Inc., Wallingford CT.
Merrick, J. P., Moran, D., Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A., 111(45), 11683–11700. doi:
1021/jp073974n
Tomasi, J. (2011). Selected features of the polarizable continuum model for the representation of solvation. WIREs Comput. Mol. Sci., 1(5), 855–867. doi: 10.1002/wcms.54
Glendening, E. D., Hiatt, D. M., Weinhold, F. (2024). Natural Bond Orbital Analysis of Chemical Structure, Spectroscopy, and Reactivity: How it Works. Comprehensive Comput. Chem., 2, 406–421. doi: 10.1016/B978-0-12-821978-2.00077-5
Taherian, R., Chahkandi, B., Zahedi, E. (2021). A comprehensive theoretical analysis of Curtius rearrangement of syn-syn and syn-anti conformers of oxalyl diazide. J. Mol. Graphics Modell., 109, 108012. doi: 10.1016/j.jmgm.2021.108012
Godara, S., Radhakrishnan, A., Paranjothy, M. (2020). Chemical Dynamics Simulations of Curtius Reaction of Acetyl- and Fluorocarbonyl Azides. J. Phys. Chem. A., 124(32), 6438–6444. doi: 10.1021/acs.jpca.0c04366
Nouri, A., Zahedi, E., Ehsani, M., Nouri, A., Balali, E. (2018). Understanding the kinetics and molecular mechanism of the Curtius rearrangement of 3-oxocyclobutane-1-carbonyl azide. Comput. Theor. Chem., 1130, 121–129. doi: 10.1016/j.comptc.2018.03.019
Kakkar, R., Zaidi, S., Grover, R. (2009). The Curtius Rearrangement of Some Organic Azides: A DFT Mechanistic Study. Int. J. Quantum Chem., 109(5), 1058–1069. doi: 10.1002/qua.21911
Kishi, V., Chahkandi, B., Zahedi, E., Allameh, S. (2024). A theoretical assessment of Curtius rearrangement of malonyl azide: Molecular mechanism insight and solvent effects. J. Mol. Liq., 396, 124078. doi: 10.1016/j.molliq.2024.124078
Peng, X.-L., Ding, W.-L., Li, Q.-S., Li, Z.-S. (2017). Theoretical Insights into Photo-Induced Curtius Rearrangement of Chlorodifluoroacetyl Azide. Org. Chem. Front., 4, 1153–1161. doi: 10.1039/C7QO00083A
Xie, B.-B., Cui, Ch.-X., Fang, W.-H., Cui, G. (2018). Photoinduced Curtius rearrangements of fluorocarbonyl azide, FC(O)N3: a QM/MM nonadiabatic dynamics simulation. Phys. Chem. Chem. Phys., 20, 19363–19372. doi: 10.1039/C8CP02651C
Abu-Eittah, R. H., Hassan, W. M. I., Zordok, W. (2015). A theoretical study of the thermal Curtius rearrangement of some cinnamoyl azides using the DFT approach. J. Struct. Chem., 56(4), 628–641. doi: 10.1134/S0022476615040046
Tarwade, V., Dmitrenko, O., Bach, R. D., Fox, J. M. (2008). The Curtius Rearrangement of Cyclopropyl and Cyclopropenoyl Azides. A Combined Theoretical and Experimental Mechanistic Study. J. Org. Chem., 73(21), 8189–8197. doi: 10.1021/jo801104t
Williams, A., Williams, J. (2003). Free Energy Relationships in Organic and Bio-Organic Chemistry. Cambridge, UK: Royal Society of Chemistry.
Anslyn, E. V., Dougherty, D. A. (2005). Modern Physical Organic Chemistry. Sausalito, USA: University Science.
Wu, X., Mason, J., North, M. (2017). Isocyanurate Formation During Oxazolidinone Synthesis from Epoxides and Isocyanates Catalysed by a Chromium(Salphen) Complex. Chem. Eur. J., 23(52), 12937–12943. doi: 10.1002/chem.201702948
Tokar, A. V. (2014). The quantum-chemical investigation of N-cyclization reaction mechanism for epichlorohydrin aminolysis products. Visn. Dnipropetr. Univ.: Khim. – Bull. Dnipropetr. Univ.: Chem., 22(2), 27–30. doi: 10.15421/081418
Tokar, A. V., Petrushyna, H. О. (2018). [The quantum-chemical investigation of heterocyclization mechanism for oligomeric product of epichlorohydrin aminolysis: epoxide or the dioxane?]. J. Chem. Technol., 26(2), 12–19 (in Ukrainian). doi: 10.15421/0817260202
留言 (0)