Serial assessment of coronary artery inflammation using cardiac CT in anthracycline chemotherapy for breast cancer

Vejpongsa P, Yeh ET (2014) Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol 64:938–945

Article  Google Scholar 

Galan-Arriola C, Lobo M, Vilchez-Tschischke JP et al (2019) Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol 73:779–791

Article  Google Scholar 

Cowgill JA, Francis SA, Sawyer DB (2019) Anthracycline and peripartum cardiomyopathies. Circ Res 124:1633–1646

Article  Google Scholar 

Ferreira de Souza T, Quinaglia ACST, Osorio Costa F et al (2018) Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease. JACC Cardiovasc Imaging 11:1045–1055

Article  Google Scholar 

Galan-Arriola C, Vilchez-Tschischke JP, Lobo M et al (2022) Coronary microcirculation damage in anthracycline cardiotoxicity. Cardiovasc Res 118:531–541

Article  Google Scholar 

Luo W, Zou X, Wang Y et al (2023) Critical role of the cGAS-STING pathway in doxorubicin-induced cardiotoxicity. Circ Res 132:e223–e242

Article  Google Scholar 

Feher A, Boutagy NE, Stendahl JC et al (2020) Computed tomographic angiography assessment of epicardial coronary vasoreactivity for early detection of doxorubicin-induced cardiotoxicity. JACC CardioOncol 2:207–219

Article  Google Scholar 

Jiang C, Xu H, Wu Y (2024) Effect of chemotherapy in tumor on coronary arteries: Mechanisms and management. Life Sci 338:122377

Article  Google Scholar 

Cobb MS, Tao S, Shortt K et al (2022) Smad3 promotes adverse cardiovascular remodeling and dysfunction in doxorubicin-treated hearts. Am J Physiol Heart Circ Physiol 323:H1091–H1107

Article  Google Scholar 

Clayton ZS, Hutton DA, Mahoney SA, Seals DR (2021) Anthracycline chemotherapy-mediated vascular dysfunction as a model of accelerated vascular aging. Aging Cancer 2:45–69

Article  Google Scholar 

Antonopoulos AS, Sanna F, Sabharwal N et al (2017) Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med 9:eaal2658

Oikonomou EK, Marwan M, Desai MY et al (2018) Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 392:929–939

Article  Google Scholar 

West HW, Dangas K, Antoniades C (2024) Advances in clinical imaging of vascular inflammation. J Am Coll Cardiol Basic Trans Sci. 9:710–732

van Diemen PA, Bom MJ, Driessen RS et al (2021) Prognostic value of RCA pericoronary adipose tissue CT-attenuation beyond high-risk plaques, plaque volume, and ischemia. JACC Cardiovasc Imaging 14:1598–1610

Article  Google Scholar 

Antoniades C, Tousoulis D, Vavlukis M et al (2023) Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J 44:3827–3844

Article  Google Scholar 

Oikonomou EK, Antonopoulos AS, Schottlander D et al (2021) Standardized measurement of coronary inflammation using cardiovascular computed tomography: integration in clinical care as a prognostic medical device. Cardiovasc Res 117:2677–2690

Google Scholar 

Oikonomou EK, Williams MC, Kotanidis CP et al (2019) A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J 40:3529–3543

Article  Google Scholar 

Tan N, Dey D, Marwick TH, Nerlekar N (2023) Pericoronary adipose tissue as a marker of cardiovascular risk: JACC review topic of the week. J Am Coll Cardiol 81:913–923

Article  Google Scholar 

Antoniades C, Antonopoulos AS, Deanfield J (2020) Imaging residual inflammatory cardiovascular risk. Eur Heart J 41:748–758

Article  Google Scholar 

Tu C, Shen H, Li X et al (2024) Longitudinal evaluation of coronary arteries and myocardium in breast cancer using coronary computed tomographic angiography. J Am Coll Cardiol Basic Trans Sci 17:1335–1347

Egashira K, Sueta D, Kidoh M et al (2022) Cardiac computed tomography-derived myocardial tissue characterization after anthracycline treatment. ESC Heart Fail 9:1792–1800

Article  Google Scholar 

Ma R, Ties D, van Assen M et al (2020) Towards reference values of pericoronary adipose tissue attenuation: impact of coronary artery and tube voltage in coronary computed tomography angiography. Eur Radiol 30:6838–6846

Article  Google Scholar 

Kanaji Y, Sugiyama T, Hoshino M et al (2021) Physiological significance of pericoronary inflammation in epicardial functional stenosis and global coronary flow reserve. Sci Rep 11:19026

Article  Google Scholar 

Wall C, Huang Y, Le EPV et al (2021) Pericoronary and periaortic adipose tissue density are associated with inflammatory disease activity in Takayasu arteritis and atherosclerosis. Eur Heart J Open 1:oeab019

Article  Google Scholar 

Nakaura T, Kidoh M, Sakaino N et al (2013) Low contrast- and low radiation dose protocol for cardiac CT of thin adults at 256-row CT: usefulness of low tube voltage scans and the hybrid iterative reconstruction algorithm. Int J Cardiovasc Imaging 29:913–923

Article  Google Scholar 

Pitteloud J, Moser LJ, Klambauer K et al (2024) Effect of vessel attenuation, VMI level, and reconstruction kernel on pericoronary adipose tissue attenuation for EID CT and PCD CT: an ex vivo porcine heart study. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.24.31607

Lyon AR, Lopez-Fernandez T, Couch LS et al (2022) 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229–4361

Article  Google Scholar 

Mergen V, Ried E, Allmendinger T et al (2022) Epicardial adipose tissue attenuation and fat attenuation index: phantom study and in vivo measurements with photon-counting detector CT. AJR Am J Roentgenol 218:822–829

Article  Google Scholar 

Eberhard M, Alkadhi H (2024) Beyond the AJR: pericoronary fat attenuation index measurements with CT-the need for standardization. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.24.31946

Mancio J, Oikonomou EK, Antoniades C (2018) Perivascular adipose tissue and coronary atherosclerosis. Heart 104:1654–1662

Article  Google Scholar 

Curigliano G, Cardinale D, Dent S et al (2016) Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin 66:309–325

Article  Google Scholar 

Lopez-Mattei J, Yang EH, Baldassarre LA et al (2023) Cardiac computed tomographic imaging in cardio-oncology: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT). Endorsed by the International Cardio-Oncology Society (ICOS). J Cardiovasc Comput Tomogr 17:66–83

Article  Google Scholar 

Lopez-Mattei JC, Yang EH, Ferencik M, Baldassarre LA, Dent S, Budoff MJ (2021) Cardiac computed tomography in cardio-oncology: JACC: CardioOncology Primer. JACC CardioOncol 3:635–649

Article  Google Scholar 

Sueta D, Kidoh M, Oda S et al (2021) Usefulness of cardiac computed tomography in the diagnosis of anti-cancer therapy-related cardiac dysfunction—consistency with magnetic resonance imaging. Circ J 85:393–396

Article  Google Scholar 

Kidoh M, Oda S, Takashio S et al (2023) CT extracellular volume fraction versus myocardium-to-lumen signal ratio for cardiac amyloidosis. Radiology 306:e220542

Article  Google Scholar 

Almeida S, Pelter M, Shaikh K et al (2020) Feasibility of measuring pericoronary fat from precontrast scans: Effect of iodinated contrast on pericoronary fat attenuation. J Cardiovasc Comput Tomogr 14:490–494

Article  Google Scholar 

Chen C, Chen M, Tao Q, Hu S, Hu C (2023) Non-contrast CT-based radiomics nomogram of pericoronary adipose tissue for predicting haemodynamically significant coronary stenosis in patients with type 2 diabetes. BMC Med Imaging 23:99

Article  Google Scholar 

留言 (0)

沒有登入
gif