Bardwell JCA (2002) Disulfide bond formation, a race between FAD and oxygen. Dev Cell 3:758–760
Article CAS PubMed Google Scholar
Bräuer P, Parker JL, Gerondopoulos A, Zimmermann I, Seeger MA, Barr FA, Newstead S (2019) Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science 363:1103–1107
Chivers PT, Prehoda KE, Raines RT (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36:4061–4066
Article CAS PubMed Google Scholar
Cole CC, Misiura M, Hulgan SAH, Peterson CM, Williams JW 3rd, Kolomeisky AB, Hartgerink JD (2022) Cation-π interactions and their role in assembling collagen triple helices. Biomacromolecules 23:4645–4654
Article CAS PubMed Google Scholar
Conte IL, Cookson E, Hellen N, Bierings R, Mashanov G, Carter T (2015) Is there more than one way to unpack a Weibel–Palade body? Blood 126:2165–2167
Article CAS PubMed PubMed Central Google Scholar
Crawley JT, de Groot R, Xiang Y, Luken BM, Lane DA (2011) Unravelling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 118:3212–3221
Article CAS PubMed PubMed Central Google Scholar
Dang LT, Purvis AR, Huang R-H, Westfield LA, Sadler JE (2011) Phylogenetic and functional analysis of histidine residues essential for pH-dependent Multimerization of von Willebrand factor. J Biol Chem 286:25763–25769
Article CAS PubMed PubMed Central Google Scholar
Fang X, Lin J, Fang Y, Wu J (2018) Prediction of spacer-α6 complex: a novel insight into binding of ADAMTS13 with A2 domain of von Willebrand factor under forces. Sci Rep 8:5791
Article PubMed PubMed Central Google Scholar
Feliciangeli SF, Thomas L, Scott GK, Subbian E, Hung C-H, Molloy SS, Jean F, Shinde U, Thomas G (2006) Identification of a pH sensor in the Furin Propeptide that regulates enzyme activation. J Biol Chem 281:16108–16116
Article CAS PubMed Google Scholar
Flood VH, Gill JC, Christopherson PA, Bellissimo DB, Friedman KD, Haberichter SL, Lentz SR, Montgomery RR (2012) Critical VWF A1 Domain Residues Influence Type VI Collagen Binding. J Throm Haem 10:1417–1424
Freedman RB, Klappa P, Ruddock LW (2002) Protein disulfide isomerases exploit synergy between catalytic and specific binding domains. EMBO Rep 3:136–140
Article CAS PubMed PubMed Central Google Scholar
Fu H, Jiang Y, Yang D, Scheiflinger F, Wong WP, Springer TA (2017) Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat Commun 8:324
Article PubMed PubMed Central Google Scholar
Fujimura Y, Holland LZ (2022) COVID-19 microthrombosis: unusually large VWF multimers are a platform for activation of the alternative complement pathway under cytokine storm. Int J Hematol 115:457–469
Article CAS PubMed PubMed Central Google Scholar
Fuller JR, Knockenhauer KE, Leksa NC, Peters RT, Batchelor JD (2021) Molecular determinants of the factor VIII/von Willebrand factor complex revealed by BIVV001 cryo-electron microscopy. Blood 137:2970–2980
Article CAS PubMed PubMed Central Google Scholar
Gerke V (2011) Von Willebrand factor folds into a bouquet. EMBO J 30:3880–3881
Article CAS PubMed PubMed Central Google Scholar
Gerondopoulos A, Bräuer P, Sobajima T, Wu Z, Parker JL, Biggin PC, Barr FA, Newstead S (2021) A signal capture and proofreading mechanism for the KDEL-receptor explains selectivity and dynamic range in ER retrieval. elife 2021. https://doi.org/10.7554/eLife.68380
Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11:2807–2850
Article CAS PubMed Google Scholar
Huang RH, Wang Y, Roth R, Yu X, Purvis AR, Heuser JE, Egelman EH, Sadler JE (2008) Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand factor. Proc Natl Acad Sci USA 105:482–487
Article CAS PubMed PubMed Central Google Scholar
Inaba K, Masui S, Iida H, Vavassori S, Sitia R, Suzuki M (2010) Crystal structures of human Ero1α reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO J 29:3330–3343
Article CAS PubMed PubMed Central Google Scholar
Jha V, Kumari T, Manickam V, Assar Z, Olson KL, Min J-K, Cho J (2021) ERO1-PDI redox signaling in health and disease. Antiox Redox Signaling 35:1093–1115
Jiang Y, Fu H, Springer TA, Wong WP (2019) Electrostatic steering enables flow-activated von Willebrand factor to bind platelet glycoprotein, revealed by single-molecule stretching and imaging. J Mol Biol 431:1380–1396
Article CAS PubMed PubMed Central Google Scholar
Kalagara T, Moutsis T, Yang Y, Pappelbaum KI, Farken A, Cladder-Micus L, Vidal-Y-Sy S, John A, Bauer AT, Moerschbacher BM, Schneider SW, Gorzelanny C (2018) The endothelial glycocalyx anchors von Willebrand factor fibres to the vascular endothelium. Blood Adv 2:2347–2357
Article CAS PubMed PubMed Central Google Scholar
Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, Ginsburg D, Tsai H-M (2011) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413:488–494
Matsushita T, Sadler JE (1995) Identification of amino acid residues essential for von Willebrand factor binding to platelet glycoprotein Ib. J Biol Chem 270:13406–13414
Article CAS PubMed Google Scholar
Michaux G, Abbitt KB, Collinson LM, Haberichter SL, Norman KE, Cutler DF (2006) The physiological function of von Willebrand's factor depends on its tubular storage in endothelial Weibel–Palade bodies. Dev Cell 10:223–232
Article CAS PubMed Google Scholar
Osman EEA, Rehemtulla A, Neamati N (2022) Why all the fury over Furin? J Med Chem 65:2747–2784
Article CAS PubMed Google Scholar
Parakh S, Atkin JD (2015) Novel roles for protein disulphide isomerase in disease states: a double edged sword? Front Cell Develop Biol 3:30
Powell LE, Foster PA (2021) Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer Med 10:2812–2825
Article CAS PubMed PubMed Central Google Scholar
Quan S, Schneide I, Pan J, Von Hacht A, Bardwell JCA (2007) The CXXC motif is more than a redox rheostat. J Biol Chem 282:28823–22883
Article CAS PubMed Google Scholar
Rastegar-Lari G, Villoutreix BO, Ribba A-S, Legendre P, Meyer D, Baruch D (2002) Two clusters of charged residues located in the electropositive face of the von Willebrand factor A1 domain are essential for heparin binding. Biochemistry 41:6668–6678
Article CAS PubMed Google Scholar
Rehemtulla A, Kaufman RJ (1992) Preferred sequence requirements for cleavage of pro-von Willebrand factor by Propeptide-processing enzymes. Blood 79:2349–2355
留言 (0)