Acute intermittent hypoxia in spinal cord injury gait rehabilitation: a systematic review of randomized trials

DeVivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50(5):365–372. https://doi.org/10.1038/sc.2011.178

Article  PubMed  Google Scholar 

Welch JF, Sutor TW, Vose AK, Perim RR, Fox EJ, Mitchell GS (2020) Synergy between Acute Intermittent Hypoxia and Task-Specific Training. Exerc Sport Sci Rev 48(3):125–132. https://doi.org/10.1249/jes.0000000000000222

Article  PubMed  Google Scholar 

Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord Injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10. https://doi.org/10.3389/fneur.2019.00282

Müller-Jensen L, Ploner CJ, Kroneberg D, Schmidt WU (2021) Clinical presentation and causes of non-traumatic spinal cord injury: an observational study in emergency patients. Front Neurol 12. https://doi.org/10.3389/fneur.2021.701927

Ditunno PL, Patrick M, Stineman M, Ditunno JF (2008) Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord 46(7):500–506. https://doi.org/10.1038/sj.sc.3102172

Article  PubMed  Google Scholar 

Esclarin A (2010) Un Enfoque Multidisciplinario. Medica Panamericana. Lesion medular; Madrid, Spain

Google Scholar 

Bishop L, Stein J, Wong CK (2012) Robot-aided GAIT training in an individual with chronic spinal cord injury. J Neurol Phys Ther 36(3):138–143. https://doi.org/10.1097/npt.0b013e3182624c87

Article  PubMed  Google Scholar 

Field-Fote EC, Yang JF, Basso DM, Gorassini MA (2016) Supraspinal Control predicts locomotor function and forecasts responsiveness to training after spinal cord Injury. J Neurotrauma 34(9):1813–1825. https://doi.org/10.1089/neu.2016.4565

Article  PubMed  Google Scholar 

Quinzaños J, Villa AR, Flores AA, Pérez R (2014) Proposal and validation of a clinical trunk control test in individuals with spinal cord injury. Spinal Cord 52(6):449–454. https://doi.org/10.1038/sc.2014.34

Article  PubMed  Google Scholar 

Rahimi-Movaghar V, Sayyah MK, Akbari H, Khorramirouz R, Rasouli MR, Moradi-Lakeh M, Shokraneh F, Vaccaro AR (2013) Epidemiology of traumatic spinal cord Injury in developing countries: a systematic review. Neuroepidemiology 41(2):65–85. https://doi.org/10.1159/000350710

Article  PubMed  Google Scholar 

Spinal cord Injury (SCI) facts and figures at a glance (2016) J Spinal Cord Med 39(2):243–244. https://doi.org/10.1080/10790268.2016.1160676

Article  Google Scholar 

Shin JC, Kim DH, Yu SJ, Yang HE, Yoon SY (2013) Epidemiologic change of patients with spinal cord injury. Annals Rehabilitation Med 37(1):50. https://doi.org/10.5535/arm.2013.37.1.50

Article  Google Scholar 

Onifer SM, Smith GM, Fouad K (2011) Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics 8(2):283–293. https://doi.org/10.1007/s13311-011-0034-4

Article  PubMed  Google Scholar 

Scivoletto G, Tamburella F, Laurenza L, Torre M, Molinari M (2014) Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury. Front Hum Neurosci 8. https://doi.org/10.3389/fnhum.2014.00141

Arroyo-Fernández R, Menchero-Sánchez R, Pozuelo-Carrascosa DP, Romay-Barrero H, Fernández-Maestra A, Martínez-Galán I (2024) Effectiveness of Body Weight-supported Gait Training on Gait and Balance for Motor-Incomplete Spinal Cord Injuries: a systematic review with Meta-analysis. J Clin Med 13(4):1105. https://doi.org/10.3390/jcm13041105

Article  PubMed  Google Scholar 

Alashram AR, Annino G, Padua E (2021) Robot-assisted gait training in individuals with spinal cord injury: a systematic review for the clinical effectiveness of Lokomat. J Clin Neurosci 91:260–269. https://doi.org/10.1016/j.jocn.2021.07.019

Article  PubMed  Google Scholar 

Alashram AR, Annino G (2022) Focal muscle vibration reduces spasticity and improves functional level in incomplete spinal cord injury: a case report. Phys Medizin Rehabilitationsmedizin Kurortmedizin 33(03):162–165. https://doi.org/10.1055/a-1819-6874

Article  Google Scholar 

Alashram AR, Janada Q (2023) Whole-body vibration for motor impairments in patients with spinal cord injury: a systematic review. Curr Phys Med Rehabilitation Rep 11(3):292–302. https://doi.org/10.1007/s40141-023-00410-w

Article  Google Scholar 

Abou L, Malala VD, Yarnot R, Alluri A, Rice LA (2020) Effects of virtual reality therapy on GAIT and balance among individuals with spinal cord Injury: a systematic review and meta-analysis. Neurorehabilit Neural Repair 34(5):375–388. https://doi.org/10.1177/1545968320913515

Article  Google Scholar 

Alashram AR (2024) Effects of robotic therapy associated with noninvasive brain stimulation on motor function in individuals with incomplete spinal cord injury: a systematic review of randomized controlled trials. J Spinal Cord Med 1–16. https://doi.org/10.1080/10790268.2024.2304921

Alashram AR, Annino G, Mercuri NB (2019) Rhythmic auditory stimulation in gait rehabilitation for traumatic brain and spinal cord injury. J Clin Neurosci 69:287–288. https://doi.org/10.1016/j.jocn.2019.08.080

Article  PubMed  Google Scholar 

DePaul VG, Wishart LR, Richardson J, Thabane L, Ma J, Lee TD (2014) Varied overground walking training versus body-weight-supported treadmill training in adults within 1 year of stroke. Neurorehabilit Neural Repair 29(4):329–340. https://doi.org/10.1177/1545968314546135

Article  Google Scholar 

Klobucká S, Klobucký R, Valovičová K, Šiarnik P, Kollár B (2023) Cost-effectiveness analysis of robot-assisted gait training in patients with bilateral spastic cerebral palsy. Cost Eff Resource Allocation 21(1). https://doi.org/10.1186/s12962-023-00475-3

Chang E, Kim HT, Yoo B (2020) Virtual reality sickness: a review of causes and measurements. Int J Hum Comput Interact 36(17):1658–1682. https://doi.org/10.1080/10447318.2020.1778351

Article  Google Scholar 

Veldema J, Gharabaghi A (2022) Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke. J Neuroeng Rehabil 19(1). https://doi.org/10.1186/s12984-022-01062-y

Tan AQ, Barth S, Trumbower RD (2020) Acute intermittent hypoxia as a potential adjuvant to improve walking following spinal cord injury: evidence, challenges, and future directions. Curr Phys Med Rehabilitation Rep 8(3):188–198. https://doi.org/10.1007/s40141-020-00270-8

Article  Google Scholar 

Sandhu MS, Rymer WZ (2021) Brief exposure to systemic hypoxia enhances plasticity of the central nervous system in spinal cord injured animals and man. Curr Opin Neurol 34(6):819–824. https://doi.org/10.1097/wco.0000000000000990

Article  PubMed  Google Scholar 

Astorino TA, Harness ET, White AC (2015) Efficacy of Acute Intermittent Hypoxia on Physical Function and Health Status in Humans with Spinal Cord Injury: A Brief Review. Neural Plasticity 2015:1–8. https://doi.org/10.1155/2015/409625

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ:n71. https://doi.org/10.1136/bmj.n71

Article  Google Scholar 

Macedo LG, Elkins MR, Maher CG, Moseley AM, Herbert RD, Sherrington C (2010) There was evidence of convergent and construct validity of Physiotherapy evidence database quality scale for physiotherapy trials. J Clin Epidemiol 63(8):920–925. https://doi.org/10.1016/j.jclinepi.2009.10.005

Article  PubMed  Google Scholar 

Foley NC, Teasell RW, Bhogal SK, Speechley MR (2003) Stroke Rehabilitation evidence-based review: methodology. Top Stroke Rehabil 10(1):1–7. https://doi.org/10.1310/y6tg-1kq9-ledq-64l8

Article  PubMed  Google Scholar 

Bogard AT, Hemmerle MR, Smith AC, Tan AQ (2023) Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol. https://doi.org/10.1113/jp285425

Article  PubMed  Google Scholar 

Lynch M, Duffell L, Sandhu M, Srivatsan S, Deatsch K, Kessler A, Mitchell GS, Jayaraman A, Rymer WZ (2016) Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: a pilot study. J Spinal Cord Med 40(3):295–303. https://doi.org/10.1080/10790268.2016.1142137

Article  PubMed  Google Scholar 

McKenzie K, Veit N, Aalla S, Yang C, Giffhorn M, Lynott A, Buchler K, Kishta A, Barry A, Sandhu M, Moon Y, Rymer WZ, Jayaraman A (2024) Combining neuromodulation strategies in spinal cord Injury GAIT Rehabilitation: a proof of concept, randomized, crossover trial. Arch Phys Med Rehabil. https://doi.org/10.1016/j.apmr.2024.06.011

Article  PubMed  Google Scholar 

Navarrete-Opazo A, Alcayaga JJ, Sepúlveda O, Varas G (2016a) Intermittent hypoxia and locomotor training enhances dynamic but not standing balance in patients with incomplete spinal cord injury. Arch Phys Med Rehabil 98(3):415–424. https://doi.org/10.1016/j.apmr.2016.09.114

Article  PubMed  Google Scholar 

Navarrete-Opazo A, Alcayaga J, Sepúlveda O, Rojas E, Astudillo C (2016b) Repetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: a randomized, Triple-Blind, placebo-controlled clinical trial. J Neurotrauma 34(9):1803–1812. https://doi.org/10.1089/neu.2016.4478

Article  PubMed  Google Scholar 

Sandhu MS, Gray E, Kocherginsky M, Jayaraman A, Mitchell GS, Rymer WZ (2019) Prednisolone pretreatment enhances intermittent Hypoxia-Induced plasticity in persons with chronic incomplete spinal cord injury. Neurorehabilit Neural Repair 33(11):911–921. https://doi.org/10.1177/1545968319872992

Article  Google Scholar 

Tan AQ, Sohn WJ, Naidu A, Trumbower RD (2021) Daily acute intermittent hypoxia combined with walking practice enhances walking performance but not intralimb motor coordination in persons with chronic incomplete spinal cord injury. Exp Neurol 340:113669. https://doi.org/10.1016/j.expneurol.2021.113669

Article 

留言 (0)

沒有登入
gif