DeVivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50(5):365–372. https://doi.org/10.1038/sc.2011.178
Welch JF, Sutor TW, Vose AK, Perim RR, Fox EJ, Mitchell GS (2020) Synergy between Acute Intermittent Hypoxia and Task-Specific Training. Exerc Sport Sci Rev 48(3):125–132. https://doi.org/10.1249/jes.0000000000000222
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord Injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10. https://doi.org/10.3389/fneur.2019.00282
Müller-Jensen L, Ploner CJ, Kroneberg D, Schmidt WU (2021) Clinical presentation and causes of non-traumatic spinal cord injury: an observational study in emergency patients. Front Neurol 12. https://doi.org/10.3389/fneur.2021.701927
Ditunno PL, Patrick M, Stineman M, Ditunno JF (2008) Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord 46(7):500–506. https://doi.org/10.1038/sj.sc.3102172
Esclarin A (2010) Un Enfoque Multidisciplinario. Medica Panamericana. Lesion medular; Madrid, Spain
Bishop L, Stein J, Wong CK (2012) Robot-aided GAIT training in an individual with chronic spinal cord injury. J Neurol Phys Ther 36(3):138–143. https://doi.org/10.1097/npt.0b013e3182624c87
Field-Fote EC, Yang JF, Basso DM, Gorassini MA (2016) Supraspinal Control predicts locomotor function and forecasts responsiveness to training after spinal cord Injury. J Neurotrauma 34(9):1813–1825. https://doi.org/10.1089/neu.2016.4565
Quinzaños J, Villa AR, Flores AA, Pérez R (2014) Proposal and validation of a clinical trunk control test in individuals with spinal cord injury. Spinal Cord 52(6):449–454. https://doi.org/10.1038/sc.2014.34
Rahimi-Movaghar V, Sayyah MK, Akbari H, Khorramirouz R, Rasouli MR, Moradi-Lakeh M, Shokraneh F, Vaccaro AR (2013) Epidemiology of traumatic spinal cord Injury in developing countries: a systematic review. Neuroepidemiology 41(2):65–85. https://doi.org/10.1159/000350710
Spinal cord Injury (SCI) facts and figures at a glance (2016) J Spinal Cord Med 39(2):243–244. https://doi.org/10.1080/10790268.2016.1160676
Shin JC, Kim DH, Yu SJ, Yang HE, Yoon SY (2013) Epidemiologic change of patients with spinal cord injury. Annals Rehabilitation Med 37(1):50. https://doi.org/10.5535/arm.2013.37.1.50
Onifer SM, Smith GM, Fouad K (2011) Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics 8(2):283–293. https://doi.org/10.1007/s13311-011-0034-4
Scivoletto G, Tamburella F, Laurenza L, Torre M, Molinari M (2014) Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury. Front Hum Neurosci 8. https://doi.org/10.3389/fnhum.2014.00141
Arroyo-Fernández R, Menchero-Sánchez R, Pozuelo-Carrascosa DP, Romay-Barrero H, Fernández-Maestra A, Martínez-Galán I (2024) Effectiveness of Body Weight-supported Gait Training on Gait and Balance for Motor-Incomplete Spinal Cord Injuries: a systematic review with Meta-analysis. J Clin Med 13(4):1105. https://doi.org/10.3390/jcm13041105
Alashram AR, Annino G, Padua E (2021) Robot-assisted gait training in individuals with spinal cord injury: a systematic review for the clinical effectiveness of Lokomat. J Clin Neurosci 91:260–269. https://doi.org/10.1016/j.jocn.2021.07.019
Alashram AR, Annino G (2022) Focal muscle vibration reduces spasticity and improves functional level in incomplete spinal cord injury: a case report. Phys Medizin Rehabilitationsmedizin Kurortmedizin 33(03):162–165. https://doi.org/10.1055/a-1819-6874
Alashram AR, Janada Q (2023) Whole-body vibration for motor impairments in patients with spinal cord injury: a systematic review. Curr Phys Med Rehabilitation Rep 11(3):292–302. https://doi.org/10.1007/s40141-023-00410-w
Abou L, Malala VD, Yarnot R, Alluri A, Rice LA (2020) Effects of virtual reality therapy on GAIT and balance among individuals with spinal cord Injury: a systematic review and meta-analysis. Neurorehabilit Neural Repair 34(5):375–388. https://doi.org/10.1177/1545968320913515
Alashram AR (2024) Effects of robotic therapy associated with noninvasive brain stimulation on motor function in individuals with incomplete spinal cord injury: a systematic review of randomized controlled trials. J Spinal Cord Med 1–16. https://doi.org/10.1080/10790268.2024.2304921
Alashram AR, Annino G, Mercuri NB (2019) Rhythmic auditory stimulation in gait rehabilitation for traumatic brain and spinal cord injury. J Clin Neurosci 69:287–288. https://doi.org/10.1016/j.jocn.2019.08.080
DePaul VG, Wishart LR, Richardson J, Thabane L, Ma J, Lee TD (2014) Varied overground walking training versus body-weight-supported treadmill training in adults within 1 year of stroke. Neurorehabilit Neural Repair 29(4):329–340. https://doi.org/10.1177/1545968314546135
Klobucká S, Klobucký R, Valovičová K, Šiarnik P, Kollár B (2023) Cost-effectiveness analysis of robot-assisted gait training in patients with bilateral spastic cerebral palsy. Cost Eff Resource Allocation 21(1). https://doi.org/10.1186/s12962-023-00475-3
Chang E, Kim HT, Yoo B (2020) Virtual reality sickness: a review of causes and measurements. Int J Hum Comput Interact 36(17):1658–1682. https://doi.org/10.1080/10447318.2020.1778351
Veldema J, Gharabaghi A (2022) Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke. J Neuroeng Rehabil 19(1). https://doi.org/10.1186/s12984-022-01062-y
Tan AQ, Barth S, Trumbower RD (2020) Acute intermittent hypoxia as a potential adjuvant to improve walking following spinal cord injury: evidence, challenges, and future directions. Curr Phys Med Rehabilitation Rep 8(3):188–198. https://doi.org/10.1007/s40141-020-00270-8
Sandhu MS, Rymer WZ (2021) Brief exposure to systemic hypoxia enhances plasticity of the central nervous system in spinal cord injured animals and man. Curr Opin Neurol 34(6):819–824. https://doi.org/10.1097/wco.0000000000000990
Astorino TA, Harness ET, White AC (2015) Efficacy of Acute Intermittent Hypoxia on Physical Function and Health Status in Humans with Spinal Cord Injury: A Brief Review. Neural Plasticity 2015:1–8. https://doi.org/10.1155/2015/409625
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ:n71. https://doi.org/10.1136/bmj.n71
Macedo LG, Elkins MR, Maher CG, Moseley AM, Herbert RD, Sherrington C (2010) There was evidence of convergent and construct validity of Physiotherapy evidence database quality scale for physiotherapy trials. J Clin Epidemiol 63(8):920–925. https://doi.org/10.1016/j.jclinepi.2009.10.005
Foley NC, Teasell RW, Bhogal SK, Speechley MR (2003) Stroke Rehabilitation evidence-based review: methodology. Top Stroke Rehabil 10(1):1–7. https://doi.org/10.1310/y6tg-1kq9-ledq-64l8
Bogard AT, Hemmerle MR, Smith AC, Tan AQ (2023) Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol. https://doi.org/10.1113/jp285425
Lynch M, Duffell L, Sandhu M, Srivatsan S, Deatsch K, Kessler A, Mitchell GS, Jayaraman A, Rymer WZ (2016) Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: a pilot study. J Spinal Cord Med 40(3):295–303. https://doi.org/10.1080/10790268.2016.1142137
McKenzie K, Veit N, Aalla S, Yang C, Giffhorn M, Lynott A, Buchler K, Kishta A, Barry A, Sandhu M, Moon Y, Rymer WZ, Jayaraman A (2024) Combining neuromodulation strategies in spinal cord Injury GAIT Rehabilitation: a proof of concept, randomized, crossover trial. Arch Phys Med Rehabil. https://doi.org/10.1016/j.apmr.2024.06.011
Navarrete-Opazo A, Alcayaga JJ, Sepúlveda O, Varas G (2016a) Intermittent hypoxia and locomotor training enhances dynamic but not standing balance in patients with incomplete spinal cord injury. Arch Phys Med Rehabil 98(3):415–424. https://doi.org/10.1016/j.apmr.2016.09.114
Navarrete-Opazo A, Alcayaga J, Sepúlveda O, Rojas E, Astudillo C (2016b) Repetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: a randomized, Triple-Blind, placebo-controlled clinical trial. J Neurotrauma 34(9):1803–1812. https://doi.org/10.1089/neu.2016.4478
Sandhu MS, Gray E, Kocherginsky M, Jayaraman A, Mitchell GS, Rymer WZ (2019) Prednisolone pretreatment enhances intermittent Hypoxia-Induced plasticity in persons with chronic incomplete spinal cord injury. Neurorehabilit Neural Repair 33(11):911–921. https://doi.org/10.1177/1545968319872992
Tan AQ, Sohn WJ, Naidu A, Trumbower RD (2021) Daily acute intermittent hypoxia combined with walking practice enhances walking performance but not intralimb motor coordination in persons with chronic incomplete spinal cord injury. Exp Neurol 340:113669. https://doi.org/10.1016/j.expneurol.2021.113669
留言 (0)