Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish

Li Z, Wang ZW, Wang Y, Gui JF (2018) Crucian carp and gibel carp culture. In: Gui J, Tang Q, Li Z, Liu J, De Silva SS (eds) Aquaculture in China: success stories and modern trends. Wiley, Hoboken, pp 149–157. https://doi.org/10.1002/9781119120759.ch2_4

Chapter  Google Scholar 

Kraemer SA, Ramachandran A, Perron GG (2019) Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7:180. https://doi.org/10.3390/microorganisms7060180

Article  PubMed  PubMed Central  CAS  Google Scholar 

Limbu SM, Chen LQ, Zhang ML, Du ZY (2021) A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: a review. Rev Aquac 13:1015–1059. https://doi.org/10.1111/raq.12511

Article  Google Scholar 

Rahman MA, Lee SG, Yusoff FM, Rafiquzzaman S (2018) Hybridization and its application in aquaculture. In: Wang H, Piferrer F, Chen S, Shen Z (eds) Sex control in aquaculture. Wiley, Hoboken, pp 163–178

Chapter  Google Scholar 

Xiong NX, Kuang XY, Fang ZX, Ou J, Li SY, Zhao JH et al (2022) Transcriptome analysis and co-expression network reveal the mechanism linking mitochondrial function to immune regulation in red crucian carp (Carassius auratus red var) after Aeromonas hydrophila challenge. J Fish Dis 45:1491–1509. https://doi.org/10.1111/jfd.13677

Article  PubMed  CAS  Google Scholar 

Wang C, Luo X, Zhang Y, Zhou Y, Xiao Q, Huang X et al (2023) Triploidization modulates intestinal microbiota and promotes growth in Carassius auratus. Aquaculture 571:739480. https://doi.org/10.1016/j.aquaculture.2023.739480

Article  CAS  Google Scholar 

Salzano FA, Marino L, Salzano G, Botta RM, Cascone G, D’Agostino Fiorenza U et al (2018) Microbiota composition and the integration of exogenous and endogenous signals in reactive nasal inflammation. J Immunol Res 2018:2724951. https://doi.org/10.1155/2018/2724951

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ringø E, Zhou Z, Vecino JG, Wadsworth S, Romero J, Krogdahl Å et al (2016) Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac Nutr 22:219–282. https://doi.org/10.1111/anu.12346

Article  CAS  Google Scholar 

Cheng D, Song J, Xie M, Song D (2019) The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: a review. Trends Food Sci Technol 91:426–435. https://doi.org/10.1016/J.TIFS.2019.07.044

Article  CAS  Google Scholar 

Soccol CR, Vandenberghe LdS, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, et al (2010) The potential of probiotics: a review. https://doaj.org/article/32f15e5c72ad49d0bec2f611ce385fbb

Plessas S, Nouska C, Karapetsas A, Kazakos S, Alexopoulos A, Mantzourani I et al (2017) Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from feta-type cheese. Food Chem 226:102–108. https://doi.org/10.1016/j.foodchem.2017.01.052

Article  PubMed  CAS  Google Scholar 

Soares MB, Martinez RC, Pereira EP, Balthazar CF, Cruz AG, Ranadheera CS et al (2019) The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res Int 125:108542. https://doi.org/10.1016/j.foodres.2019.108542

Article  PubMed  CAS  Google Scholar 

Zeng Z, Yue W, Kined C, Raciheon B, Liu J, Chen X (2023) Effect of Lysinibacillus isolated from environment on probiotic properties and gut microbiota in mice. Ecotoxicol Environ Saf 258:114952. https://doi.org/10.1016/j.ecoenv.2023.114952

Article  PubMed  CAS  Google Scholar 

Tang X, Ma S, Sun L, Li Y, Yang Q, Yu X et al (2022) Isolation, identification, and positive effects of potential probiotics on Carassius auratus. Aquaculture 548:737668

Article  CAS  Google Scholar 

Kuang XY, Fang ZX, Xiong NX, Ou J, Wang F, Luo SW (2024) Probiotic characterization of a novel Bacillus cereus strain fkW8-1-2 isolated from intestine of white crucian carp (Carassius cuvieri). Reprod Breed 4:95–101. https://doi.org/10.1016/j.repbre.2024.03.003

Article  Google Scholar 

Wang F, Xiong NX, Ou J, Zhong ZR, Xie Q, Huang J-F et al (2024) Immunometabolic interplay in Edwardsiella tarda-infected crucian carp (Carassius auratus) and in vitro identification of the antimicrobial activity of apolipoprotein D (ApoD) by utilization of multiomics analyses. Int J Biol Macromol 278:134898. https://doi.org/10.1016/j.ijbiomac.2024.134898

Article  PubMed  CAS  Google Scholar 

Telfer E, Graham N, Stanbra L, Manley T, Wilcox P (2013) Extraction of high purity genomic DNA from pine for use in a high-throughput genotyping platform. NZ J Forest Sci 43:1–8. https://doi.org/10.1186/1179-5395-43-3

Article  Google Scholar 

Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61:1636–1643. https://doi.org/10.4315/0362-028X-61.12.1636

Article  PubMed  CAS  Google Scholar 

Kwon M, Hussain MS, Oh DH (2017) Biofilm formation of Bacillus cereus under food-processing-related conditions. Food Sci Biotechnol 26:1103–1111. https://doi.org/10.1007/s10068-017-0129-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qian Z, Zhu H, Zhao D, Yang P, Gao F, Lu C et al (2021) Probiotic Lactobacillus sp. strains inhibit growth, adhesion, biofilm formation, and gene expression of bacterial vaginosis-inducing Gardnerella vaginalis. Microorganisms 9:728. https://doi.org/10.3390/microorganisms9040728

Article  PubMed  PubMed Central  CAS  Google Scholar 

Letzel AC, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 15:1–21. https://doi.org/10.1186/1471-2164-15-983

Article  CAS  Google Scholar 

Samson JS, Choresca CH Jr, Quiazon KMA (2020) Selection and screening of bacteria from African nightcrawler, Eudrilus eugeniae (Kinberg, 1867) as potential probiotics in aquaculture. World J Microbiol Biotechnol 36:16. https://doi.org/10.1007/s11274-019-2793-8

Article  PubMed  Google Scholar 

Vine NG, Leukes WD, Kaiser H (2004) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231:145–152. https://doi.org/10.1016/S0378-1097(03)00954-6

Article  PubMed  CAS  Google Scholar 

Cerezuela R, Guardiola FA, González P, Meseguer J, Esteban MÁ (2012) Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immunol 33:342–349. https://doi.org/10.1016/j.fsi.2012.05.004

Article  PubMed  Google Scholar 

Gueimonde M, Sánchez B, de los Reyes-Gavilan CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202. https://doi.org/10.3389/fmicb.2013.00202

Article  PubMed  PubMed Central  Google Scholar 

Hengge R (2008) The two-component network and the general stress sigma factor RpoS (σS) in Escherichia coli. In: Utsumi R (ed) Bacterial signal transduction: networks and drug targets. Springer, New York, pp 40–53. https://doi.org/10.1007/978-0-387-78885-2_4

Chapter  Google Scholar 

Nikaido H, Zgurskaya HI (2001) AcrAB and related multidrug efflux pumps of Escherichia coli. J Mol Microbiol Biotechnol 3:215–218

PubMed  CAS  Google Scholar 

Silver S, Walderhaug M (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228. https://doi.org/10.1128/mr.56.1.195-228.1992

Article  PubMed  PubMed Central  CAS  Google Scholar 

Orme R, Douglas CI, Rimmer S, Webb M (2006) Proteomic analysis of Escherichia coli biofilms reveals the overexpression of the outer membrane protein OmpA. Proteomics 6:4269–4277. https://doi.org/10.1002/pmic.200600193

Article  PubMed  CAS  Google Scholar 

Solovyev M, Izvekova G, Kashinskaya E, Gisbert E (2018) Dependence of pH values in the digestive tract of freshwater fishes on some abiotic and biotic factors. Hydrobiologia 807:67–85. https://doi.org/10.1007/s10750-017-3383-0

Article  CAS  Google Scholar 

Solovyev M, Kashinskaya E, Izvekova G, Glupov V (2015) pH values and activity of digestive enzymes in the gastrointestinal tract of fish in Lake Chany (West Siberia). J Ichthyol 55:251–258.

留言 (0)

沒有登入
gif