Multi-omics analysis in inclusion body myositis identifies mir-16 responsible for HLA overexpression

Callan A, Capkun G, Vasanthaprasad V, Freitas R, Needham M. A systematic review and Meta-analysis of Prevalence studies of sporadic inclusion body myositis. J Neuromuscul Dis. 2017;4:127–37.

Article  PubMed  Google Scholar 

Felice KJ, Whitaker CH, Wu Q, Larose DT, Shen G, Metzger AL, et al. Sensitivity and clinical utility of the anti-cytosolic 5′-nucleotidase 1A (cN1A) antibody test in sporadic inclusion body myositis: report of 40 patients from a single neuromuscular center. Neuromuscul Disord. 2018;28:660–4.

Article  PubMed  Google Scholar 

Schmidt K, Schmidt J. Inclusion body myositis: advancements in diagnosis, pathomechanisms, and treatment. Curr Opin Rheumatol. 2017;29:632–8.

Article  PubMed  Google Scholar 

Keller CW, Schmidt J, Lünemann JD. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann Clin Transl Neurol. 2017;4:422–45.

Article  PubMed  PubMed Central  Google Scholar 

Snedden AM, Kellett KAB, Lilleker JB, Hooper NM, Chinoy H. The role of protein aggregation in the pathogenesis of inclusion body myositis. Clin Exp Rheumatol. 2022;40:414–24.

Article  PubMed  Google Scholar 

Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol. 2019;15:257–72.

Article  PubMed  Google Scholar 

Das S, Mukhopadhyay I. TiMEG: an integrative statistical method for partially missing multi-omics data. Sci Rep. 2021;11:24077.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:1–15.

Article  Google Scholar 

Reshetova P, Smilde AK, van Kampen AH, Westerhuis JA. Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data. BMC Syst Biol. 2014;8:S2.

Article  PubMed  PubMed Central  Google Scholar 

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. Comment: the FAIR Guiding principles for scientific data management and stewardship. Sci Data. 2016;3:1–9.

Article  Google Scholar 

Inclusion Body Myositis Active Subnetwork Identification Workflow. https://workflowhub.eu/workflows/681. Accessed 13 Dec 2023.

Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton J, Tijanić N, et al. Methods included: standardizing computational reuse and portability with the Common Workflow Language. Commun ACM. 2022;65:54–63.

Article  Google Scholar 

jdwijnbergen/multi-. omics_asi general | Docker Hub. https://hub.docker.com/repository/docker/jdwijnbergen/multi-omics_asi/general. Accessed 13 Dec 2023.

Johari M, Vihola A, Palmio J, Jokela M, Jonson PH, Sarparanta J, et al. Comprehensive transcriptomic analysis shows disturbed calcium homeostasis and deregulation of T lymphocyte apoptosis in inclusion body myositis. J Neurol. 2022;269:4161–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

R Core Team. R: A Language and Environment for Statistical Computing. 2021.

RStudio Team. RStudio: Integrated Development Environment for R. 2021.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.

Article  PubMed  PubMed Central  Google Scholar 

Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

Article  PubMed  PubMed Central  Google Scholar 

Johari M, Arumilli M, Palmio J, Savarese M, Tasca G, Mirabella M, et al. Association study reveals novel risk loci for sporadic inclusion body myositis. Eur J Neurol. 2017;24:572–7.

Article  CAS  PubMed  Google Scholar 

Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics. 2016;32:1423–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89:82–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

Article  CAS  PubMed  Google Scholar 

Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 2020;48:D148–54.

CAS  PubMed  Google Scholar 

Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics. 2012;13:328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Iersel MP, Pico AR, Kelder T, Gao J, Ho I, Hanspers K, et al. The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinformatics. 2010;11:5.

Article  PubMed  PubMed Central  Google Scholar 

Xu T, Su N, Liu L, Zhang J, Wang H, Zhang W, et al. miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics. 2018;19:514.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Novoa-del-Toro EM, Mezura-Montes E, Vignes M, Térézol M, Magdinier F, Tichit L, et al. A multi-objective genetic algorithm to find active modules in multiplex biological networks. PLOS Comput Biol. 2021;17:e1009263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. 2020.

Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sturm G, Finotello F, List M, Immunedeconv. An R Package for Unified Access to computational methods for estimating Immune cell fractions from Bulk RNA-Sequencing data. In: Boegel S, editor. Bioinformatics for Cancer Immunotherapy: methods and protocols. New York, NY: Springer US; 2020. pp. 223–32.

Chapter  Google Scholar 

Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 2005;52:1824–35.

Article  CAS  PubMed  Google Scholar 

Bernard A, Boumsell L, Dausset J, Milstein C, Schlossman SF, editors. Leucocyte typing: human leucocyte differentiation antigens detected by monoclonal antibodies. Specification — classification — nomenclature. Berlin, Heidelberg: Springer; 1984.

Google Scholar 

Hwang J-R, Byeon Y, Kim D, Park S-G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med. 2020;52:750–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Courtney AH, Lo W-L, Weiss A. TCR Signaling: mechanisms of initiation and propagation. Trends Biochem Sci. 2018;43:108–23.

Article  CAS  PubMed  Google Scholar 

Bi X, Xu Y, Li T, Li X, Li W, Shao W, et al. RNA targets ribogenesis factor WDR43 to Chromatin for transcription and pluripotency control. Mol Cell. 2019;75:102–e1169.

Article  CAS  PubMed  Google Scholar 

Lee SJ, Baserga SJ. Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for Pre-18S rRNA Processing. Mol Cell Biol. 1999;19:5441–52.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif