Arndt S, Aschendorff A, Laszig R, Beck R, Schild C, Kroeger S, Ihorst G, Wesarg T (2011) Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otol Neurotol 32(1):39–47
Beck R, Shiraliyev K, Arndt S, Rauch AK, Aschendorff A, Hassepass F, Ketterer MC (2022) Scalar position, dislocation analysis and outcome in CI reimplantation due to device failure. Eur Arch Otorhinolaryngol 279(10):4853–4859
Article CAS PubMed PubMed Central Google Scholar
Canzi P, Aprile F, Simoncelli A, Manfrin M, Magnetto M, Lafe E, Minervini D, Avato I, Terrani S, Scribante A, Gazibegovic D, Benazzo M (2021) MRI-induced artifact by a cochlear implant with a novel magnet system: an experimental cadaver study. Eur Arch Otorhinolaryngol 278(10):3753–3762
Canzi P, Magnetto M, Simoncelli A, Manfrin M, Aprile F, Lafe E, Carlotto E, Avato I, Scribante A, Preda L, Benazzo M (2022) The role of cochlear implant positioning on MR imaging quality: a preclinical in vivo study with a novel implant magnet system. Eur Arch Otorhinolaryngol 279(6):2889–2898
Carlson ML, Neff BA, Link MJ, Lane JI, Watson RE, McGee KP, Bernstein MA, Driscoll CL (2015) Magnetic resonance imaging with cochlear implant magnet in place: safety and imaging quality. Otol Neurotol 36:965–971
Cass ND, Honce JM, O’Dell AL, Gubbels SP (2019) First MRI with new cochlear implant with rotatable internal magnet system and proposal for standardization of reporting magnet-related artifact size. Otol Neurotol 40:883–891
Deneuve S, Loundon N, Leboulanger N, Rouillon I, Garabedian EN (2008) Cochlear implant magnet displacement during magnetic resonance imaging. Otol Neurotol 29:789–190
Hassepass F, Stabenau V, Maier W, Arndt S, Laszig R, Beck R, Aschendorff A (2014) Revision surgery due to magnet dislocation in cochlear implant patients: an emerging complication. Otol Neurotol 35(1):29–34
https://www.nitrc.org/projects/wfu_pickatlas. Accessed 1 Jul 2024
Ketterer MC, Brückerhoff K, Arndt S, Beck R, Aschendorff A (2024a) Insertion of a second electrode array-a rare complication of CI reimplantation. HNO 72(Suppl 1):63–65
Article CAS PubMed Google Scholar
Ketterer MC, Knopke S, Häußler SM, Hildenbrand T, Becker C, Gräbel S, Olze H (2018) Asymmetric hearing loss and the benefit of cochlear implantation regarding speech perception, tinnitus burden and psychological comorbidities: a prospective follow-up study. Eur Arch Otorhinolaryngol 275(11):2683–2693
Ketterer MC, Shiraliyev K, Arndt S, Aschendorff A, Beck R (2024b) Implantation and reimplantation: epidemiology, etiology and pathogenesis over the last 30 years. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-024-08568-2
Article PubMed PubMed Central Google Scholar
Kim BG, Kim JW, Park JJ, Kim SH, Kim HN, Choi JY (2015) Adverse events and discomfort during magnetic resonance imaging in cochlear implant recipients. JAMA Otolaryngol Head Neck Surg 141:45–52
Knopke S, Gräbel S, Förster-Ruhrmann U, Mazurek B, Szczepek AJ, Olze H (2016) Impact of cochlear implantation on quality of life and mental comorbidity in patients aged 80 years. Laryngoscope 126(12):2811–2816
Knopke S, Häussler S, Gräbel S, Wetterauer D, Ketterer M, Fluger A, Szczepek AJ, Olze H (2019) Age-dependent psychological factors influencing the outcome of cochlear implantation in elderly patients. Otol Neurotol 40(4):e441–e453
Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239
Péus D, Pfluger A, Häussler SM, Knopke S, Ketterer MC, Szczepek AJ, Gräbel S, Olze H (2021) Single-centre experience and practical considerations of the benefit of a second cochlear implant in bilaterally deaf adults. Eur Arch Otorhinolaryngol 278(7):2289–2296
Schreyer AG, Friedrich C, Mrosek S, Hoffstetter P, Rennert J, Framme C, Jung EM, Feuerbach S, Schöffski O, Zorger N (2010) Kostenanalyse einer kontrastgestützten MRT des Schädels an einem Universitätsklinikum [Cost analysis of contrast-enhanced cranial MRI at a German university hospital]. Rofo 182(10):891–9
Article CAS PubMed Google Scholar
Sharon JD, Northcutt BG, Aygun N, Francis HW (2016) Magnetic resonance imaging at 1.5 tesla with a cochlear implant magnet in place: image quality and usability. Otol Neurotol 37:1284–1290
Shew M, Wichova H, Lin J, Ledbetter LN, Staecker H (2019) Magnetic resonance imaging with cochlear implants and auditory brainstem implants: are we truly practicing MRI safety? Laryngoscope 129:482–489
Srinivasan R, So CW, Amin N, Jaikaransingh D, D’Arco F, Nash R (2019) A review of the safety of MRI in cochlear implant patients with retained magnets. Clin Radiol 74:972.e9-972.e16
Article CAS PubMed Google Scholar
Takamura T, Hara S, Nariai T, Ikenouchi Y, Suzuki M, Taoka T, Ida M, Ishigame K, Hori M, Sato K, Kamagata K, Kumamaru K, Oishi H, Okamoto S, Araki Y, Uda K, Miyajima M, Maehara T, Inaji M, Tanaka Y, Naganawa S, Kawai H, Nakane T, Tsurushima Y, Onodera T, Nojiri S, Aoki S (2023) Effect of temporal sampling rate on estimates of the perfusion parameters for patients with moyamoya disease assessed with simultaneous multislice dynamic susceptibility contrast-enhanced MR imaging. Magn Reson Med Sci 22(3):301–312
Article CAS PubMed Google Scholar
The Royal College of Radiologists, the College of Radiographers and the Institute of Physics and Engineering in Medicine (2017) – MRI equipment, operations and planning in the NHS - Report from the Clinical Imaging Board. www.rcr.ac.uk/sites/default/files/cib_mri_equipment_report.pdf
Todt I, Rademacher G, Mittmann P, Wagner J, Mutze S, Ernst A (2015) MRI artifacts and cochlear implant positioning at 3T in vivo. Otol Neurotol 36:972–976
Wagner F, Wimmer W, Leidolt L, Vischer M, Weder S, Wiest R, Mantokoudis G, Caversaccio MD (2015) Significant artifact reduction at 1.5 T and 3 T MRI by the use of a cochlear implant with removable magnet: an experimental human cadaver study. PLoS ONE 10:e0132483
Article PubMed PubMed Central Google Scholar
CAT12 Website. https://neuro-jena.github.io/cat. Accessed 1 July 2024
Guo C, Ferreira D, Fink K et al (2019) Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol 29:1355–1364
Zhou X, Wu R, Zeng Y et al (2022) Choice of voxel-based morphometry processing pipeline drives variability in the location of neuroanatomical brain markers. Commun Biol 5:913
Article PubMed PubMed Central Google Scholar
Khlif MS, Egorova N, Werden E et al (2019) A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants. NeuroImage Clin 21:101581
Tavares V, Prata D, Ferreira HA (2020) Comparing SPM12 and CAT12 segmentation pipelines: a brain tissue volume-based age and Alzheimer’s disease study. J Neurosci Methods 334:108565
Ay U, Kizilates-Evin G, Bayram A et al (2022) Comparison of FreeSurfer and CAT12 software in parcel-based cortical thickness calculations. Brain Topogr 35:572–582
Machado Dias MDF, Carvalho P, Castelo-Branco M et al (2022) Cortical thickness in brain imaging studies using FreeSurfer and CAT12: a matter of reproducibility. Neuroimage Rep 2(4):100137
Seiger R, Ganger S, Kranz GS et al (2018) Cortical thickness estimations of FreeSurfer and the CAT12 toolbox in patients with Alzheimer’s disease and healthy controls. J Neuroimaging 28(5):515–523. https://doi.org/10.1111/JON.12521
Article PubMed PubMed Central Google Scholar
Velázquez J, Mateos J, Pasaye EH et al (2021) Cortical thickness estimation: a comparison of FreeSurfer and three voxel-based methods in a test–retest analysis and a clinical application. Brain Topogr 34:430–441
留言 (0)