Bantle JP. Is fructose the optimal low glycemic index sweetener? Nestle Nutr Workshop Ser Clin Perform Program. 2006;11:83–95.
Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79:537–43.
Article CAS PubMed Google Scholar
Taskinen MR, Söderlund S, Bogl LH, Hakkarainen A, Matikainen N, Pietiläinen KH, et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J Intern Med. 2017;282:187–201.
Article CAS PubMed Google Scholar
Jalal DI, Smits G, Johnson RJ, Chonchol M. Increased fructose associates with elevated blood pressure. J Am Soc Nephrol. 2010;21:1543–9.
Article CAS PubMed PubMed Central Google Scholar
Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010;299:E685–94.
Article CAS PubMed Google Scholar
Angelopoulos TJ, Lowndes J, Zukley L, Melanson KJ, Nguyen V, Huffman A, et al. The effect of high-fructose corn syrup consumption on triglycerides and uric acid. J Nutr. 2009;139:1242S–5S.
Article CAS PubMed Google Scholar
Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.
Article CAS PubMed PubMed Central Google Scholar
Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Ren Physiol. 2006;290:F625–31.
Perez-Pozo SE, Schold J, Nakagawa T, Sanchez-Lozada LG, Johnson RJ, Lillo JL. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int J Obes. 2010;34:454–61.
Brown CM, Dulloo AG, Yepuri G, Montani JP. Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Regul Integr Comp Physiol. 2008;294:R730–7.
Article CAS PubMed Google Scholar
Chen L, Caballero B, Mitchell DC, Loria C, Lin PH, Champagne CM, et al. Reducing consumption of sugar-sweetened beverages is associated with reduced blood pressure: a prospective study among United States adults. Circulation 2010;121:2398–406.
Article CAS PubMed PubMed Central Google Scholar
Cirillo P, Gersch MS, Mu W, Scherer PM, Kim KM, Gesualdo L, et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. J Am Soc Nephrol. 2009;20:545–53.
Article CAS PubMed PubMed Central Google Scholar
Nakayama T, Kosugi T, Gersch M, Connor T, Sanchez-Lozada LG, Lanaspa MA, et al. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Am J Physiol Ren Physiol. 2010;298:F712–20.
Aoyama M, Isshiki K, Kume S, Chin-Kanasaki M, Araki H, Araki S, et al. Fructose induces tubulointerstitial injury in the kidney of mice. Biochem Biophys Res Commun. 2012;419:244–9.
Article CAS PubMed Google Scholar
Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Ren Physiol. 2007;293:F1256–61.
Brymora A, Flisinski M, Johnson RJ, Goszka G, Stefanska A, Manitius J. Low-fructose diet lowers blood pressure and inflammation in patients with chronic kidney disease. Nephrol Dial Transplant. 2012;27:608–12.
Gaby AR. Adverse effects of dietary fructose. Alter Med Rev. 2005;10:294–306.
Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018;27:351–61.e3.
Article CAS PubMed PubMed Central Google Scholar
Gordish KL, Kassem KM, Ortiz PA, Beierwaltes WH. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide. Physiol Rep. 2017;5:e13162.
Singh AK, Amlal H, Haas PJ, Dringenberg U, Fussell S, Barone SL, et al. Fructose-induced hypertension: essential role of chloride and fructose absorbing transporters PAT1 and Glut5. Kidney Int. 2008;74:438–47.
Article CAS PubMed PubMed Central Google Scholar
Oudot C, Lajoix AD, Jover B, Rugale C. Dietary sodium restriction prevents kidney damage in high fructose-fed rats. Kidney Int. 2013;83:674–83.
Article CAS PubMed Google Scholar
Hu G, Xu L, Ma Y, Kohzuki M, Ito O. Chronic exercise provides renal-protective effects with upregulation of fatty acid oxidation in the kidney of high fructose-fed rats. Am J Physiol Ren Physiol. 2020;318:F826–34.
Naito Y, Senchi A, Sawada H, Oboshi M, Horimatsu T, Okuno K, et al. Iron-restricted pair-feeding affects renal damage in rats with chronic kidney disease. PLoS ONE. 2017;12:e0172157.
Article PubMed PubMed Central Google Scholar
Takayanagi K, Ikari A, Anzai N, Shimizu T, Tayama Y, Asakura J, et al. Down-regulation of transient receptor potential (TRP) M6 channel as a cause of hypermagnesiuric hypomagnesemia in obese type-2 diabetic rats. Am J Physiol, Ren Physiol. 2015;308:F1386–97.
Asakura J, Hasegawa H, Takayanagi K, Shimazu T, Suge R, Shimizu T, et al. Renoprotective effect of pioglitazone by the prevention of glomerular hyperfiltration through the possible restoration of altered macula densa signaling in rats with type-2 diabetic nephropathy. Exp Nephrol. 2013;122:83–94.
Nishimoto Y, Tomida T, Matsui H, Ito T, Okumura K. Decrease in renal medullary endothelial nitric oxide synthase of fructose-fed, salt-sensitive hypertensive rats. Hypertension 2002;40:190–4.
Article CAS PubMed Google Scholar
Guo Q, Mori T, Jiang Y, Hu C, Ohsaki Y, Yoneki Y, et al. Losartan modulates muscular capillary density and reverses thiazide diuretic-exacerbated insulin resistance in fructose-fed rats. Hypertens Res. 2012;35:48–54.
Thiesson HC, Jensen BL, Bistrup C, Ottosen PD, McNeilly AD, Andrew R, et al. Renal sodium retention in cirrhotic rats depends on glucocorticoid-mediated activation of mineralocorticoid receptor due to decreased renal 11beta-HSD-2 activity. Am J Physiol Regul Integr Comp Physiol. 2007;292:R625–36.
Article CAS PubMed Google Scholar
Sanchez-Lozada LG, Tapia E, Jimenez A, Bautista P, Cristobal M, Nepomuceno T, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Ren Physiol. 2007;292:F423–9.
García-Arroyo FE, Pérez-Estévez HE, Tapia E, Gonzaga G, Muñoz-Jiménez I, Soto V, et al. Restricted water intake and hydration with fructose-containing beverages during infancy predispose to aggravate an acute renal ischemic insult in adolescent rats. Biomed Res Int. 2020;2020:4281802.
Article PubMed PubMed Central Google Scholar
Flisiński M, Brymora A, Skoczylas-Makowska N, Stefańska A, Manitius J. Fructose-rich diet is a risk factor for metabolic syndrome, proximal tubule injury and urolithiasis in rats. Int J Mol Sci. 2021;23:203.
Xu L, Hu G, Qiu J, Miura T, Yamakoshi S, Namai-Takahashi A, et al. Exercise training prevents high fructose-induced hypertension and renal damages in male dahl salt-sensitive rats. Med Sci Sports Exerc. 2023;55:803–12.
Article CAS PubMed Google Scholar
Yang Y, Yu J, Huo J, Yang L, Yan Y. Protective effects of peanut skin extract on high-fat and high-fructose diet-induced kidney injury in rats. Food Sci Biotechnol. 2023;32:1091–9.
Article CAS PubMed PubMed Central Google Scholar
García-Arroyo FE, Muñoz-Jiménez I, Gonzaga G, Tapia E, Osorio-Alonso H, Roncal-Jiménez CA, et al. A role for both V1a and V2 receptors in renal heat stress injury amplified by rehydration with fructose. Int J Mol Sci. 2019;20:5764.
Sugawara-Yokoo M, Suzuki T, Matsuzaki T, Naruse T, Takata K. Presence of fructose transporter GLUT5 in the S3 proximal tubules in the rat kidney. Kidney Int. 1999;56:1022–8.
留言 (0)