P. Hu, P. Hu, T.D. Vu, M. Li, S. Wang, Y. Ke, X. Zeng, L. Mai, Y. Long, Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications, Chem Rev., 123, 4353 (2023); https://doi.org/10.1021/acs.chemrev.2c00546.
M.Ya. Valakh, V.O. Yukhymchuk, V.M. Dzhagan, O.F. Isaieva, V.S. Yefanov, B.M. Romanyuk, Variation of the Metal-Insulator Phase Transition Temperature in VO2: An Overview of Some Possible Implementation Methods, Semicond. Physics, Quantum Electronics & Optoelectronics, 27 (2), 136 (2024); https://doi.org/10.15407/spqeo27.02.136.
Y. Skorenkyy, O. Kramar, Y. Dovhopyaty, Strong Correlation Effects in Vanadium Oxide Films, Physics and Chemistry of Solid State, 23(1), 62 (2022); https://doi.org/10.15330/pcss.23.1.62-66.
F. Urena-Begara, A. Crunteanu, J. Raskin, Raman and XPS Characterization of Vanadium Oxide Thin Films with Temperature, Appl. Surf. Sci., 403, 717 (2017); https://doi.org/10.1016/j.apsusc.2017.01.160.
S. Chouteau, S. Mansouri, M. Lemine, O. Ne, A.O. Suleiman, B. Le Drogoff, M. Chaker, Investigation of the Metal-to-Insulator Transition of N-doped VO2 (M1) Thin Films, Appl. Surf. Sci., 554, 149661 (2021); https://doi.org/10.1016/j.apsusc.2021.149661.
A. Romanyuk, R. Steiner, L. Marot, P. Oelhafen, Temperature-Induced Metal – Semiconductor Transition in W-doped VO2 Films Studied by Photoelectron Spectroscopy, Solar Energy Materials & Solar Cells, 91, 1831 (2007); https://doi.org/10.1016/j.solmat.2007.06.013.
S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, H. Liu, Critical Behaviour and Size Effects in Light-Induced Transition of Nanostructured VO2 Films, Phys Rev B, 82, 205425 (2010); https://doi.org/10.1103/PhysRevB.82.205425.
K.L. Gurunatha, S. Sathasivam, J. Li, M. Portnoi, I.P. Parkin, I. Papakonstantinou, Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal-Insulator Transition of VO2 Colloidal Particles, Adv Funct Mater., 30 (49), 2005311 (2020); https://doi.org/10.1002/adfm.202005311.
E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S.A. Wolf, R. Wincheski, R.A. Lukaszew, I. Novikova, Effect of a Substrate-Induced Microstructure on the Optical Properties of the Insulator- Metal Transition Temperature in VO2 Thin Films, J. Appl. Phys., 113, 233104 (2013); https://doi.org/10.1063/1.4811689.
M. Becker, J. Kessler, F. Kuhl, S.L. Benz, L. Chen, A. Polity, P.J. Klar, S. Chatterjee, Phase Control of Multivalent Vanadium Oxides VOx by Ion-Beam Sputter-Deposition, Phys. Stat. Sol (a), 219, 2100828 (2022); https://doi.org/10.1002/pssa.202100828.
A. Rana, A. Yadav, G. Gupta, A. Rana, Infrared Sensitive Mixed Phase of V7O16 and V2O5 Thin-Films, RSC Adv. 13, 15334 (2023); https://doi.org/10.1039/d3ra00752a.
N. Kumar, A. Rúa, J. Lu, F. Fernández, S. Lysenko, Ultrafast Excited-State Dynamics of V3O5 as a Signature of a Photoinduced Insulator-Metal Phase Transition, Phys Rev Lett., 119, 057602 (2017); https://doi.org/10.1103/PhysRevLett.119.057602.
S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, Y. Ueda. Synthesis, Structure and Magnetic Properties of V4O9 – A Missing Link in Binary Vanadium Oxides, J. Solid State Chem., 183, 1496 (2010); https://doi.org/10.1016/j.jssc.2010.04.007.
C. Zhang, Q. Yang, C. Koughia, F. Ye, M. Sanayei, S. Wen, S. Kasap, Characterization of Vanadium Oxide Thin Films with Different Stoichiometry Using Raman Spectroscopy, Thin Solid Films, 620, 64 (2016); https://doi.org/10.1016/j.tsf.2016.07.082 .
A Subrahmanyam, Y B. K. Reddy, and C L Nagendra. Nano-Vanadium Oxide Thin Films in Mixed Phase for Microbolometer Applications, J. Phys. D: Appl. Phys., 41, 195108 (2008); https://doi.org/10.1088/0022-3727/41/19/195108.
M. Abdel-Rahman, M. Zia and M. Alduraibi, Temperature-Dependent Resistive Properties of Vanadium Pentoxide/Vanadium Multi-Layer Thin Films for Microbolometer & Antenna-Coupled Microbolometer Applications, Sensors, 19, 1320 (2019); https://doi.org/10.3390/s19061320.
P.M. Lytvyn, V.M. Dzhagan, M.Ya. Valakh, A.A. Korchovyi, O.F. Isaieva, O.A. Stadnik, O.A. Kulbachynskyi, O.Yo. Gudymenko, B.M. Romanyuk, V.P. Melnik, Nanomechanical Properties of Polycrystalline Vanadium Oxide Thin Films of Different Phase Composition, Semiconductor Physics, Quantum Electronics & Optoelectronics, 26, 388 (2023); https://doi.org/10.15407/spqeo26.04.388.
V.M. Dzhagan, M. Ya Valakh, O.F. Isaieva, V.O. Yukhymchuk, O.A. Stadnik, O. Yo Gudymenko, P.M. Lytvyn, O.A. Kulbachynskyi, V.S. Yefanov, B.M. Romanyuk, V.P. Melnik, Raman Fingerprints of Different Vanadium Oxides as Impurity Phases in VO2 Films, Optical Materials, 148, 114894 (2024); https://doi.org/10.1016/j.optmat.2024.114894.
A.A. Efremov, B.M. Romaniuk, V.P. Melnyk, O.A. Stadnik, T.M. Sabov, O.A. Kulbachinskiy, O.V. Dubikovskiy. Study of Fractality Nature in VO2 Films and its Influence on Metal-Insulator Phase Transition, Semiconductor Physics, Quantum Electronics & Optoelectronics, 27 (1), 028 (2024); https://doi.org/10.15407/spqeo27.01.028.
V.V. Strelchuk, O.F. Kolomys, D.M. Maziar, V.P. Melnik, B.M. Romanyuk, O.Y. Gudymenko, O.V. Dubikovskyi, O.I. Liubchenko, Effect of Structural Disorder on the Modification of V–V and V–O Bond Lengths at the Metal-Dielectric Phase Transition in VO2 Thin Films, Materials Science in Semiconductor Processing, 174, 108224 (2024); https://doi.org/10.1016/j.mssp.2024.108224.
V. Melnik, I. Khatsevych, V. Kladko, A. Kuchuk, V. Nikirin, B. Romanyuk, Low-Temperature Method for Thermochromic High Ordered VO2 Phase Formation, Mater Lett. 68, 215 (2012); https://doi.org/10.1016/j.matlet.2011.10.075 .
Y. Goltvyanskyi, I. Khatsevych, A. Kuchuk, V. Kladko, V. Melnik, P. Lytvyn, V. Nikirin, B. Romanyuk, Structural Transformation and Functional Properties of Vanadium Oxide Films after Low-Temperature Annealing, Thin Solid Films, 564, 179 (2014); https://doi.org/10.1016/j.tsf.2014.05.067.
D. Singh, B. Viswanath, In Situ Nanomechanical Behaviour of Coexisting Insulating and Metallic Domains in VO2 Microbeams, J. Mater. Sci., 52 (10), 5589 (2017); https://doi.org/10.1007/s10853-017-0792-4.
H. Guo, K. Wang, Y. Deng, Y.Oh, S.A. Syed Asif, O.L. Warren, Z.W. Shan, J. Wu, A.M. Minor, Nanomechanical Actuation from Phase Transitions in Individual VO2 Micro-Beams, Appl. Phys. Lett., 102, 231909 (2013); https://doi.org/10.1063/1.4810872.
Y.A. Birkhölzer, K. Sotthewes, N. Gauquelin, L. Riekehr, D. Jannis, E. Van Der Minne, Y. Bu, J. Verbeeck, H.J.W. Zandvliet, G. Koster, G. Rijnders, High-Strain-Induced Local Modification of the Electronic Properties of VO2 Thin Films, ACS Appl. Electron. Mater., 4 (12), 6020 (2022); https://doi.org/10.1021/acsaelm.2c01176.
M. Mazur, A. Lubańska, J. Domaradzki, D. Wojcieszak, Complex Research on Amorphous Vanadium Oxide Thin Films Deposited by Gas Impulse Magnetron Sputtering, Appl. Sci., 12 (18), 8966 (2022); https://doi.org/10.3390/app12188966.
V.P. Kladko, V.P. Melnik, О.I. Liubchenko, B.M. Romanyuk, О.Y. Gudymenko, Т.M. Sabov, О. V. Dubikovskyi, Z. V Maksimenko, О. V Kosulya, O.A. Kulbachynskyi, P.M. Lytvyn, О.O. Efremov, Semiconductor Physics Phase Transition in Vanadium Oxide Films Formed by Multistep Deposition, Semiconductor Physics, Quantum Electronics & Optoelectronics, 24, 362 (2021); https://doi.org/10.15407/spqeo24.04.362.
R. Nilsson, T. Lindblad, A. Andersson, Ammoxidation of Propane Over Antimony Vanadium-Oxide Catalysts, Journal of Catalysis, 148, 501 (1994); https://doi.org/10.1006/jcat.1994.1236.
C.A. Clifford, M.P. Seah, Quantification Issues in the Identification of Nanoscale Regions of Homopoly-mers Using Modulus Measurement Via AFM Nanoindentation. Appl. Surf. Sci., 252,1915 (2005); https://doi.org/10.1016/j.apsusc.2005.08.090.
T. Chudoba, M. Griepentrog, A. Dück et al., Young’s Modulus Measurements on Ultra-Thin Coatings, J. Mater. Res., 19, 301 (2004); https://doi.org/10.1557/jmr.2004.19.1.301.
Y. Liu, I. Sokolov, M.E. Dokukin, Y. Xiong, P. Peng, Can AFM be Used to Measure Absolute Values of Young’s Modulus of Nanocomposite Materials Down to the Nanoscale?, Nanoscale, 12 (23), 12432 (2020); https://doi.org/10.1039/D0NR02314K.
V. Dzhagan, B. Kempken, M. Valakh, J. Parisi, J. Kolny-Olesiak, DRT Zahn Probing the Structure of CuInS2-ZnS Core-Shell and Similar Nanocrystals by Raman Spectroscopy, Applied Surface Science, 395, 24 (2017); https://doi.org/10.1016/j.apsusc.2016.08.063.
O. Selyshchev, Y. Havryliuk, M.Ya. Valakh, V.O. Yukhymchuk, O. Raievska, O.L. Stroyuk, V. Dzhagan, and D.R.T. Zahn, Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu2ZnSnS4 Photovoltaic Absorbers, ACS Appl. Nano Mater., 3 (6), 5706 (2020); https://doi.org/10.1021/acsanm.0c00910.
A.O. Suleiman, S. Mansouri, N. Émond, B. Le Drogoff, T. Bégin, J. Margot, M. Chaker, Probing the Role of Thermal Vibrational Disorder in the SPT of VO2 by Raman Spectroscopy, Sci Rep., 11, 1620 (2021); https://doi.org/10.1038/s41598-020-79758-1.
V. Dzhagan, A.P. Litvinchuk, M.Y. Valakh, D.R.T. Zahn, Phonon Raman Spectroscopy of Nanocrystalline Multinary Chalcogenides as a Probe of Complex Lattice Structures, J. Phys.: Condensed Matter, 35, 103001 (2022); https://doi.org/10.1088/1361-648X/acaa18.
C.W. Chang, M.H. Hong, W.F. Lee et al., Micro-Raman Characterization of Ge Diffusion and Si Stress Change in Thin Epitaxial Si1−xGex Layers on Si (100) After Rapid Thermal Annealing, J. Mater. Research., 27(9), 1314 (2012); https://doi.org/10.1557/jmr.2012.88.
留言 (0)