A. Singh, D. Singh, B. Ahmed, & A.K. Ojha, Sun/UV-light driven photocatalytic degradation of rhodamine B dye by Zn doped CdS nanostructures as photocatalyst, Materials Chemistry and Physics, 277, 125531 (2022); https://doi.org/10.1016/j.matchemphys.2021.125531.
Jichao Zhu, Jie He, Liangguo Da, Lifang Hu. Synthesis and visible-light photocatalytic potential of nanocomposite based on the cadmium sulfide and titanoniobate, Materials Chemistry and Physics, 253, 123408 (2020); https://doi.org/10.1016/j.matchemphys.2020.123408.
Chuanbiao Bie, Junwei Fu, Bei Cheng, Liuyang Zhang. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation, Applied Surface Science, 462, 606 (2018); https://doi.org/10.1016/j.apsusc.2018.08.130.
Sajad Karimzadeh, Kiumars Bahrami. Role of L-cysteine and CdS as promoted agents in photocatalytic activity of TiO2 nanoparticles, Journal of Environmental Chemical Engineering, 7(6), 103454 (2019); https://doi.org/10.1016/j.jece.2019.103454.
N.V. Hullavarad, S.S. Hullavarad, P.C. Karulkar, Cadmium sulphide (CdS) nanotechnology: synthesis and applications, J. Nanosci. Technol., 8(7), 3272 (2008); https://doi.org/110.1166/jnn.2008.145.
T. Zhai, X. Fang, Liang L., Y. Bango, D. Golberg. One-dimensional CdS nanostructures: synthesis, properties and applications. Nanoscale, 2(2), 168 (2010); https://doi.org/10.1039/B9NR00415G.
M. Berr, A. Vaneski, A. S. Susha, J. Rodríguez-Fernández. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation, Appl. Phys. Lett., 97(9), 093108 (2010); https://doi.org/10.1063/1.3480613.
Gai, Qixiao, Ren, Shoutian, Zheng, Xiaochun, Liu, Wenjun, Dong, Quanli. Enhanced photocatalytic performance of Ag/CdS by L-cysteine functionalization: Combination of introduced co-catalytic groups and optimized injection of hot electrons, Applied Surface Science, 579, 151838 (2022); https://doi.org/10.1016/j.apsusc.2021.151838.
T. Iqbal, G. Ara, N.R. Khalid, et al. Simple synthesis of Ag-doped CdS nanostructure material with excellent properties, Appl Nanosci, 10, 23 (2020); https://doi.org/10.1007/s13204-019-01044-y.
N. Singh, S. Prajapati, Prateek, R. Kumar Gupta. Investigation of Ag doping and ligand engineering on green synthesized CdS quantum dots for tuning their optical properties, Nanofabrication, 7, 89 (2022); https://doi.org/10.37819/nanofab.007.212.
S. Ravikumar, Durai Mani, E. Chicardi, R. Sepúlveda, Krishnakumar Balu, V. Pandiyan, Young-Ho Ahn. Development of highly efficient cost-effective CdS/Ag nanocomposite for removal of azo dyes under UV and solar light, Ceramics International, 49(6), 9551 (2023); https://doi.org/10.1016/j.ceramint.2022.11.123.
A. Nain, R. Pal Chahal, E. Dhanda, S. Dahiya. The Electrochemical Society (ECS), find out more, ECS Journal of Solid State Science and Technology, 12(7), 073006 (2023); https://doi.org/10.1149/2162-8777/ace47b.
Kanika Khurana, Nirmala Rani, Neena Jaggi. Enhanced photoluminescence of CdS quantum dots thin films on Cu and Ag nanoparticles, Thin Solid Films, 737, 138928 (2021); https://doi.org/10.1016/j.tsf.2021.138928.
Chang Y-C, Lin Y-R. Construction of Ag/Ag2S/CdS Heterostructures through a Facile Two-Step Wet Chemical Process for Efficient Photocatalytic Hydrogen Production, Nanomaterials, 13(12), 1815 (2023); https://doi.org/10.3390/nano13121815.
H. Zhang, S. Qi, H. Wang, G. Zhang, K. Zhu, W. Ma. Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochemical Platform, Symmetry, 15(4), 896 (2023); https://doi.org/10.3390/sym15040896.
D. Ghosh Quantum dot based probing of mannitol: An implication in clinical diagnostics, Analyt. Chim. Acta, 675(2), 165(2010); https://doi.org/10.1016/j.aca.2010.07.020.
K. Zhang, Y. Yu, S. Sun, K. Zhang. Facile synthesis L-cysteine capped CdS:Eu quantum dots and their Hg2+ sensitive properties, Applied Surface Science, 276, 333 (2013); https://doi.org/10.1016/j.apsusc.2013.03.093.
C. Zhao-Xia, H. Yang, Y. Zhang. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg (II) in aqueous solution, Analyt. Chim. Аcta, 559(2), 234 (2006); https://doi.org/10.1016/j.aca.2005.11.061.
J. Chen., Y. Zheng, Y. Gao et al. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution, Spectrochim. Acta Part A: Molecular Biomolecul. Spectroscopy, 69(3), 1044 (2008); https://doi.org/10.1016/j.saa.2007.06.021.
D.P.S. Negi, T.I. Chanu. Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine. Nanotechnology, 19, 465507 (2008); https://doi.org/10.1088/0957-4484/19/46/465503.
K. Dashtian, S. Hajati, M. Ghaedi. L-phenylalanine-imprinted polydopamine-coated CdS/CdSe n-n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring, Biosensors and Bioelectronics, 165, 112346 (2020); https://doi.org/10.1016/j.bios.2020.112346.
X. Wei, F. Cheng, Y. Yao, X. Yi, B. Wei, H. Li, Y. Wu, J. He. Facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite for antibacterial application, RSC Adv., 30(11), 18417 (2021); https://doi.org/10.1039/D1RA02600C.
J. Liu, D. Shan, T. Zhang, Y. Li, R. Wang, Dr. M. Liu. Ag2S/CdS-Heterostructured Nanorod Synthesis by L–Cysteine-Mediated Reverse Microemulsion Method, ChemistrySelect 4(35), 10219 (2019); https://doi.org/10.1002/slct.201902171.
X. Wang, B. Yu, Q. Wang, J. Cao, M. Wang, W. Yao. L-cysteine-protected ruthenium nanoclusters on CdS as efficient and reusable photocatalysts for hydrogen production, International Journal of Hydrogen Energy, 48(77), 30006 (2023); https://doi.org/10.1016/j.ijhydene.2023.04.199.
Mohammad Hasan Yousefi, A. A.Abdolhosseinzadeh, Hamid Reza Fallah, Ali Azam Khosravi. Growth and characterization of CdS and CdS:Ag luminescent quantum dots dispersed in solution, Modern Physics Letters B, 24(25) (2011); https://doi.org/10.1142/S0217984910024882.
Majid Masteri-Farahani, Kiana Khademabbasi, Niloofar Mollatayefeh, Raphael Schneider. L- and D-cysteine functionalized CdS quantum dots as nanosensors for detection of L-morphine and D-methamphetamine, J of Nanostructures, 8(4), 325 (2018); https://doi.org/10.22052/JNS.2018.04.001.
A. Kumar, V. Chaudhary. Time resolved emission studies of Ag-adenine-templated CdS (Ag/CdS) nanohybrids, Nanotechnology, 20, 095703 (2009); https://doi.org/10.1088/0957-4484/20/9/095703.
P. Thakur, S.S. Joshi, T. Mukherjee. Fluorescent behavior of cysteine-mediated Ag@CdS nanocolloids, Langmuir, 25(11), 6377 (2009); https://doi.org/10.1021/la8042507.
P. Thakur, S.S. Joshi, K.R. Patil. Investigations of CdS and Ag–CdS nanoparticles by X-ray photoelectron spectroscopy, Applied Surface Science, 257(5), 1390 (2010); https://doi.org/10.1016/j.apsusc.2010.08.035.
G.Hota, Shikha Jain and Kartic C. Khilar. Synthesis of CdS-Ag2S core-shell/composite nanoparticles using AOT/n-heptane/water microemusions, Colloids and surfaces A: Physicochemical Engin. Aspects, 232(2-3), 119 (2004); https://doi.org/10.1016/j.colsurfa.2003.10.021.
P. Mandal, S.S. Talwar, S.S. Major, R.S. Srinivasa. Orange-red luminescence from Cu doped nanophosphor prepared using mixed Langmuir-Blodgett multilayers, J. Chem. Phys., 128(11), 114703 (2008); https://doi.org/10.1063/1.2888930.
J. Xiang, H. Cao, Q. Wu, et al. L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanospheres, Journal of Physical Chemistry C, 112(10), (2008); https://doi.org/10.1021/jp710597j.
R.L. Orimi, N. Shahtahmasedi, N. Tajabor, A. Kompany. The effect of solvent on the crystal structure and size distribution of cadmium sulfide nanocrystals, Physica E, 40, 2894 (2008); https://doi.org/10.1016/j.physe.2008.02.011.
留言 (0)