Measurements and Calculations of the Coefficients of N2O Line Broadening and Shift by Air Pressure in the (0002) ← (0000) Band

M. Yu. Arshinov, B. D. Belan, D. C. Davydov, A. V. Kozlov, A. V. Fofonov, “Soil-atmosphere greenhouse gas fluxes in a background area in the Tomsk Region (Western Siberia),” Atmos. Ocean. Opt. 36 (2), 152–161 (2023).

Article  Google Scholar 

D. A. Virt, “The Paris Agreement as a new component of the UN climate regime,” Vestnik Mezhdunarodnykh Organizatsii 12 (4), 185–214 (2017).

Google Scholar 

K. Ya. Kondratyev and V. A. Isidorov, “Nitrogen oxides as chemically and optically active trace gaseous constituents of the troposphere,” Atmos. Ocean. Opt. 14 (8), 589–597 (2001).

Google Scholar 

B. D. Belan, “Ozone in troposphere. 6. Compounds of ozone cycles,” Opt. Atmos. Okeana 22 (4), 358–379 (2009).

Google Scholar 

R. A. Toth, “N2- and air-broadened linewidths and frequency-shifts of N2O,” J. Quant. Spectrosc. Radiat. Transfer 66, 285–304 (2000). https://doi.org/10.1016/S0022-4073(99)00167-3

Article  ADS  Google Scholar 

J. Loos, M. Birk, and G. Wagner, “Pressure broadening, -shift, speed dependence and line mixing in the ν3 ro-vibrational band of N2O,” J. Quant. Spectrosc. Radiat. Transfer 151, 300–309 (2015). https://doi.org/10.1016/j.jqsrt.2014.10.008

Article  ADS  Google Scholar 

V. Nemtchinov, C. Sun, and P. Varanasi, “Measurements of line intensities and line widths in the 3-fundamental band of nitrous oxide at atmospheric temperatures,” J. Quant. Spectrosc. Radiat. Transfer 84, 267–284 (2004). https://doi.org/10.1016/S0022-4073(02)00355-2

Article  Google Scholar 

T. Nakayama, H. Fukuda, A. Sugita, S. Hashimoto, M. Kawasaki, S. Aloisio, I. Morino, and G. Inoue, “Buffer-gas pressure broadening for the (0003) ← (0000) band of N2O measured with continuous-wave cavity ring-down spectroscopy,” Chem. Phys. 334, 196–203 (2007). https://doi.org/10.1016/j.chemphys.2007.03.001

Article  Google Scholar 

E. M. Adkins, D. A. Long, A. J. Fleisher, and J. T. Hodges, “Near-infrared cavity ring-down spectroscopy measurements of nitrous oxide in the (4200) ← (0000) and (5000) ← (0000) bands,” J. Quant. Spectrosc. Radiat. Transfer 262, 107527 (2021). https://doi.org/10.1016/j.jqsrt.2021.107527

Article  Google Scholar 

I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Canew, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. V. Auwera, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277 (1), 107949 (2022). https://doi.org/10.1016/j.jqsrt.2021.107949

Article  Google Scholar 

T. V. Kruglova and A. P. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc 111, 353–356 (2011). https://doi.org/10.1134/S0030400X1109013X

Article  ADS  Google Scholar 

K. Mogi, T. Komine, and K. Hirao, “A theoretical study on the dipole moment of N2O and the weakly bound complexes formed by N2O,” J. Chem. Phys. 95, 8999 (1991). https://doi.org/10.1063/1.461231

Article  ADS  Google Scholar 

N. Chetty and V. W. Couling, “Measurement of the electric quadrupole moment of N2O,” J. Chem. Phys. 134, 144307 (2011). https://doi.org/10.1063/1.3578609

A. Halkier, S. Coriani, and P. Jorgensen, “The molecular electric quadrupole moment of N2,” Chem. Phys. Lett. 294, 292–296 (1998). https://doi.org/10.1016/S0009-2614(98)00878-1

Article  ADS  Google Scholar 

A. D. Buckingham, R. L. Disch, and D. A. Dunmur, “Quadrupole moments of some simple molecules,” J. Am. Chem. Soc. 90, 3104–3107 (1968). https://doi.org/10.1021/ja01014a023

Article  Google Scholar 

A. D. Bykov, N. N. Lavrentieva, and L. N. Sinitsa, “Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting,” Mol. Phys. 102 (14-15), 1653–1658 (2004). https://doi.org/10.1080/00268970410001725765

Article  ADS  Google Scholar 

P. W. Anderson, “Pressure broadening in the microwave and infrared regions,” Phys. Rev. 76, 647–661 (1949). https://doi.org/10.1103/PhysRev.76.647

Article  ADS  Google Scholar 

C. J. Tsao and B. Curnutte, “Line-width of pressure-broadened spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41–91 (1961). https://doi.org/10.1016/0022-4073(62)90013-4

Article  Google Scholar 

T. N. Olney, N. M. Cann, G. Cooper, and C. E. Brion, “Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules,” Chem. Phys. 223, 59–98 (1997). https://doi.org/10.1016/S0301-0104(97)00145-6

Article  Google Scholar 

A. N. Zavilopulo, F. F. Chipev, and O. B. Shpenik, “Ionization of nitrogen, oxygen, water, and carbon dioxide molecules by near-threshold electron impact,” Tech. Phys. 50 (4), 402–407 (2005).

Article  Google Scholar 

E. F. May, M. R. Moldover, and J. W. Schmidt, “Electric and magnetic susceptibilities of gaseous oxygen: Present data and modern theory compared,” Phys. Rev. A: 78 (032522), 1–15 (2008). https://doi.org/10.1103/PhysRevA.78.032522

Article  Google Scholar 

R. Hashemi, I. E. Gordon, E. M. Adkins, J. T. Hodges, D. A. Long, M. Birk, J. Loos, C. D. Boone, A. J. Fleisher, A. Predoi-Cross, and L. S. Rothman, “Improvement of the spectroscopic parameters of the air- and self-broadened N2O and CO lines for the HITRAN2020 database applications,” J. Quant. Spectrosc. Radiat. Transfer, 107735 (2021). https://doi.org/10.1016/j.jqsrt.2021.107735

J. M. Hartmann, “A simple empirical model for the collisional spectral shift of air-broadened CO2 lines,” J. Quant. Spectrosc. Radiat. Transfer 110 (18), 2019–2026 (2009). https://doi.org/10.1016/j.jqsrt.2009.05.016

Article  ADS  Google Scholar 

留言 (0)

沒有登入
gif