Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Cambridge University Press, Cambridge, 2021). https://doi.org/10.1017/9781009157896
V. P. Meleshko, S. M. Semenov, O. A. Anisimov, Yu. A. Anokhin, L. I. Boltneva, E. A. Vaganov, G. V. Gruza, A. S. Zaitsev, A. N. Zolotokrylin, Yu. A. Izrael’, G. E. Insarov, I. L. Karol’, V. M. Kattsov, N. V. Kobysheva, A. G. Kostyanoi, A. N. Krenke, A. V. Meshcherskaya, V. M. Mirvis, V. V. Oganesyan, A. V. Pchelkin, B. A. Revich, A. I. Reshetnikov, V. A. Semenov, O. D. Sirotenko, P. V. Sporyshev, F. S. Terziev, I. E. Frolov, V. Ch. Khon, A. V. Tsyban’, B. G. Sherstyukov, I. A. Shiklomanov, and V. V. Yasyukevich, Assessment Report on Climate Change and Its Consequences in the Territory of the Russian Federation. Summary (Roshydromet, Moscow, 2008) [in Russian]
K. M. Firsov, T. Yu. Chesnokova, and A. A. Razmolov, “Impact of water vapor continuum absorption on CO2 radiative forcing in the atmosphere in the Lower Volga Region,” Atmos. Ocean. Opt. 36 (2), 162–168 (2023).
M. Etminan, G. Myhre, E. J. Highwood, and K. P. Shine, “Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing,” Geophys. Res. Lett. 43 (24), 12,614 (2016).
R. E. Roberts, J. E. A. Selby, and L. M. Biberman, “Infrared continuum absorption by atmospheric water vapor in the 8–12 micron meter window,” Appl. Opt. 15, 2085–2090 (1976).
E. J. Mlawer, S. A. Clough, P. D. Brown, and D. S. Tobin, “Collision-indused effects and the water vapor continuum,” in Proc. of the 8th ARM Science Team Meeting, Tuscon, Arisona (1998), pp. 503–511.
A. V. Khoperskov, K. M. Firsov, A. V. Titov, and A. A. Razmolov, “Deployment of the regional climate model for the south of Russia based on RegCM 4.5,” Matem. Fiz. Komp’yut. Modelir. 22 (3), 67–94 (2019). https://doi.org/10.15688/mpcm.jvolsu.2019.3.6
Article MathSciNet Google Scholar
L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and Hawks (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60 (6), 665–710 (1998).
L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82 (1–4), 5–44 (2003).
S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transfer 91, 233–244 (2004).
I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. V. Auwera, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277 (10794), 1–82 (2022).
K. M. Firsov, T. Yu. Chesnokova, and E. V. Bobrov, “The role of the water vapor continuum absorption in near ground long-wave radiation processes of the Lower Volga Region,” Atmos. Ocean. Opt. 28 (1), 1–8 (2015).
T. Yu. Chesnokova and K. M. Firsov, “Impact of updating information on the atmospheric gas absorption line parameters on the results of simulations of IR radiative fluxes in the atmosphere,” Atmos. Oceanic Opt. 36 (5), 539–549 (2023).
T. Delahaye, R. Armante, N. A. Scott, N. Jacquinet-Husson, A. Chedin, L. Crepeau, C. Crevoisier, V. Douet, A. Perrin, A. Barbe, V. Boudon, A. Campargue, L. H. Coudert, V. Ebert, J.-M. Flaud, R. R. Gamache, D. Jacquemart, A. Jolly, F. Kwabia-Tchana, A. Kyuberis, G. Li, O. M. Lyulin, L. Manceron, S. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. Nikitin, V. I. Perevalov, C. Richard, E. Starikova, S. A. Tashkun, Vl. G. Tyuterev, J. V. Auwera, B. Vispoel, A. Yachmenev, and S. Yurchenko, “The 2020 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 380, 111510 (2021).
E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phil. Trans. R. Soc. A 370, 2520–2556 (2012).
G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0–120 km). AFGL-TR-86-0110 (AFGL (OPI), Hanscom AFB, MA, 1986).
www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. Cited February 26, 2024.
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, Ph. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thepaut, “The ERA5 Global Reanalysis,” Q. J. R. Meteorol Soc. 146, 1999–2049 (2020).
留言 (0)