Hidalgo Santiago JC, et al. Effect of dapagliflozin on arterial stiffness in patients with type 2 diabetes mellitus. Med Clin (Barc). 2020;154(5):171–4.
Article CAS PubMed Google Scholar
Zinman B, et al. Empagliflozin, Cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.
Article CAS PubMed Google Scholar
Neal B, et al. Canagliflozin and Cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.
Article CAS PubMed Google Scholar
McDonagh TA et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J, 2023. 44(37): pp. 3627–3639.
KDIGO 2024 Clinical Practice Guideline for the evaluation and management of chronic kidney disease. Kidney Int, 2024. 105(4s): pp. S117–314.
Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a thrifty substrate hypothesis. Diabetes Care. 2016;39(7):1108–14.
Perrone-Filardi P, et al. Mechanisms linking empagliflozin to cardiovascular and renal protection. Int J Cardiol. 2017;241:450–6.
Sas KM, et al. Metabolomics and diabetes: analytical and computational approaches. Diabetes. 2015;64(3):718–32.
Article CAS PubMed PubMed Central Google Scholar
Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating Basic Research into Clinical Application. J Diabetes Res. 2016;2016:p3898502.
Kappel BA, et al. Effect of Empagliflozin on the metabolic signature of patients with type 2 diabetes Mellitus and Cardiovascular Disease. Circulation. 2017;136(10):969–72.
Article CAS PubMed Google Scholar
Mulder S, et al. Effects of dapagliflozin on urinary metabolites in people with type 2 diabetes. Diabetes Obes Metab. 2019;21(11):2422–8.
Article CAS PubMed Google Scholar
Bletsa E, et al. Effect of Dapagliflozin on urine metabolome in patients with type 2 diabetes. J Clin Endocrinol Metab. 2021;106(5):1269–83.
Article PubMed PubMed Central Google Scholar
Shao M, et al. Canagliflozin regulates metabolic reprogramming in diabetic kidney disease by inducing fasting-like and aestivation-like metabolic patterns. Diabetologia. 2024;67(4):738–54.
Article CAS PubMed Google Scholar
Eriksson L, Wold TJ. CV-ANOVA for significance testing of PLS and OPLS (R) models. J Chemom. 2008;22:594–600.
Monami M, Nardini C, Mannucci E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16(5):457–66.
Article CAS PubMed Google Scholar
Tsimihodimos V, Filippatos TD, Elisaf MS. SGLT2 inhibitors and the kidney: effects and mechanisms. Diabetes Metab Syndr. 2018;12(6):1117–23.
Article CAS PubMed Google Scholar
Salah HM et al. Sodium-glucose cotransporter 2 inhibitors and Cardiac Remodeling. J Cardiovasc Transl Res, 2022.
Filippas-Ntekouan S, et al. SGLT-2 inhibitors: pharmacokinetics characteristics and effects on lipids. Expert Opin Drug Metab Toxicol. 2018;14(11):1113–21.
Chino Y, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014;35(7):391–404.
Article CAS PubMed PubMed Central Google Scholar
Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 2015;3(1):8–10.
Article CAS PubMed Google Scholar
Maejima Y. SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front Cardiovasc Med. 2019;6:186.
Article CAS PubMed Google Scholar
Bonner C, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512–7.
Article CAS PubMed Google Scholar
Zhang X, et al. Dapagliflozin attenuates heart failure with preserved ejection fraction remodeling and dysfunction by elevating β-Hydroxybutyrate-activated citrate synthase. J Cardiovasc Pharmacol. 2023;82(5):375–88.
Article CAS PubMed PubMed Central Google Scholar
Chase D, et al. Empagliflozin improves cardiac energetics during ischaemia/reperfusion by directly increasing cardiac ketone utilization. Cardiovasc Res. 2023;119(16):2672–80.
Article CAS PubMed PubMed Central Google Scholar
Pherwani S, et al. Ketones provide an extra source of fuel for the failing heart without impairing glucose oxidation. Metabolism. 2024;154:155818.
Article CAS PubMed Google Scholar
Kolb H, et al. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 2021;19(1):313.
Article CAS PubMed PubMed Central Google Scholar
Wang DD, et al. Dapagliflozin reduces systemic inflammation in patients with type 2 diabetes without known heart failure. Cardiovasc Diabetol. 2024;23(1):197.
Article CAS PubMed PubMed Central Google Scholar
Kim SR, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;11(1):2127.
Article CAS PubMed PubMed Central Google Scholar
Gopalasingam N et al. Randomized crossover trial of 2-Week Ketone Ester Treatment in patients with type 2 diabetes and heart failure with preserved ejection fraction. Circulation, 2024.
Liu JJ, et al. Urine tricarboxylic acid cycle metabolites Predict Progressive chronic kidney disease in type 2 diabetes. J Clin Endocrinol Metab. 2018;103(12):4357–64.
Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14(5):291–312.
Article CAS PubMed Google Scholar
Bourgonje AR et al. Plasma citrate levels are Associated with an increased risk of Cardiovascular Mortality in patients with type 2 diabetes (Zodiac-64). J Clin Med, 2023. 12(20).
Menni C, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013;62(12):4270–6.
Article CAS PubMed PubMed Central Google Scholar
Floegel A, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639–48.
Article CAS PubMed PubMed Central Google Scholar
Wang TJ, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.
Article PubMed PubMed Central Google Scholar
Teunis C, Nieuwdorp M, Hanssen N. Interactions between Tryptophan Metabolism, the gut microbiome and the Immune System as potential drivers of non-alcoholic fatty liver Disease (NAFLD) and metabolic diseases. Metabolites, 2022. 12(6).
King NJ, Thomas SR. Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol. 2007;39(12):2167–72.
留言 (0)