Mycoremediation of heavy metals by Curvularia lunata from Buckingham Canal, Neelankarai, Chennai

Adegbola PI, Adetutu A (2024) Genetic and epigenetic modulations in toxicity: the two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 12:502–519. https://doi.org/10.1016/j.toxrep.2024.04.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akar T, Tunali S, Kiran I (2005) Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochem Eng J 25:227–235. https://doi.org/10.1016/j.bej.2005.05.006

Article  CAS  Google Scholar 

Akram MB, Khan I, Rehman MU, Sarwar A, Ullah N, Rahman S, ur Aziz T, Alharbi M, Alshammari A, Alasmari AF (2023) Mycoremediation of heavy metals contaminated soil by using indigenous metallotolerant fungi. Pol J Chem Technol 25:1–13. https://doi.org/10.2478/pjct-2023-0019

Article  CAS  Google Scholar 

Atuchin VV, Asyakina LK, Serazetdinova YR, Frolova AS, Velichkovich NS, Prosekov AYu (2023) Microorganisms for bioremediation of soils contaminated with heavy metals. Microorganisms 11:864. https://doi.org/10.3390/microorganisms11040864

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayodele PF, Bamigbade A, Bamigbade OO, Adeniyi IA, Tachin ES, Seweje AJ, Farohunbi ST (2023) Illustrated procedure to perform molecular docking using PyRx and Biovia discovery studio visualizer: a case study of 10kt with atropine. Progress Drug Discovery Biomed Sci 6. https://doi.org/10.36877/pddbs.a0000424

Baghmare P, Thakur V, Katre S, Geed SR (2024) Bioremediation, phytoremediation, and mycoremediation of wastewater: current status, challenges, and future scope. In: Emerging innovative trends in the application of biological processes for industrial wastewater treatment. Elsevier, Amsterdam, pp 1–25. https://doi.org/10.1016/B978-0-443-13561-3.00006-5

Bano A, Hussain J, Akbar A, Mehmood K, Anwar M, Hasni MS, Ullah S, Sajid S, Ali I (2018) Biosorption of heavy metals by obligate halophilic fungi. Chemosphere 199:218–222. https://doi.org/10.1016/j.chemosphere.2018.02.043

Article  CAS  PubMed  Google Scholar 

Biswas D (2023) Mycoremediation is a potential strategy for environmental clean-up of heavy metal: a review. J Surv Fish Sci. https://doi.org/10.53555/sfs.v10i1S.2143

Breierová E, Gregor T, Stratilová E (2004) T1—the role of pullulan and pectin in the uptake of Cd2+ and Ni2+ ions by Aureobasidium pullulans. Ann Microbiol 54.

Collins DO, Reese PB (2001) Biotransformation of cedrol by Curvularia lunata ATCC 12017. Phytochemistry 56:417–421. https://doi.org/10.1016/S0031-9422(00)00412-X

Article  CAS  PubMed  Google Scholar 

Damodaran D, Balakrishnan RM, Shetty VK (2013) The uptake mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by mycelia and fruiting bodies of Galerina vittiformis. Biomed Res Int 2013:1–11. https://doi.org/10.1155/2013/149120

Article  CAS  Google Scholar 

Desai SA, Patel VP, Shinde SU, Kadam SS (2024) In silico studies for the bioremediation of heavy metals from contaminated sites. In: Microbiome-assisted bioremediation. Elsevier, Amsterdam, pp 139–148. https://doi.org/10.1016/B978-0-443-21911-5.00002-7

Ding J, Tang S, Mei Z, Wang L, Huang Q, Hu H, Ling M, Wu J (2023) Vina-GPU 2.0: further accelerating AutoDock Vina and its derivatives with graphics processing units. J Chem Inf Model 63:1982–1998. https://doi.org/10.1021/acs.jcim.2c01504

Article  CAS  PubMed  Google Scholar 

Dou R, Xie Y, Liu FX, Wang B, Xu F, Xiao K (2024) In situ mycoremediation of acid rain and heavy metals co-contaminated soil through microbial inoculation with Pleurotus ostreatus. Sci Total Environ 912:169020. https://doi.org/10.1016/j.scitotenv.2023.169020

Article  CAS  PubMed  Google Scholar 

El Khoury G, Azzam W, Rebehmed J (2023) PyProtif: a PyMol plugin to retrieve and visualize protein motifs for structural studies. Amino Acids 55:1429–1436. https://doi.org/10.1007/s00726-023-03323-z

Article  CAS  PubMed  Google Scholar 

El-Bondkly AMA, El-Gendy MMAA (2022) Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 8:e09854. https://doi.org/10.1016/j.heliyon.2022.e09854

El-Gendy MMAA, Yahya SMM, Hamed AR, Soltan MM, El-Bondkly AMA (2018) Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from red sea sponge Hyrtios erectus. Appl Biochem Biotechnol 185:755–777. https://doi.org/10.1007/s12010-017-2679-x

Article  CAS  PubMed  Google Scholar 

Fatima Z, Azam A, Iqbal MZ, Badar R, Muhammad G (2024) A comprehensive review on effective removal of toxic heavy metals from water using genetically modified microorganisms. Desalination Water Treat 319:100553. https://doi.org/10.1016/j.dwt.2024.100553

Article  Google Scholar 

Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705. https://doi.org/10.1016/S0141-0229(03)00029-2

Article  CAS  Google Scholar 

Feruke-Bello YM, Odeyem O, Babalola GO (2023) Bioremediation potential of heavy metal multi-tolerant Pseudomonas Spp. isolated from a municipal waste dumpsite at Ile-Ife, Osun State, Nigeria. J Pet Environ Biotechnol 14:543.

Filipovic-Kovacevic Ž, Sipos L, Briski F (2000) Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions. Food Technol Biotechnol 38.

Freire-Nordi CS, Vieira AAH, Nascimento OR (2005) The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem 40:2215–2224. https://doi.org/10.1016/j.procbio.2004.09.003

Article  CAS  Google Scholar 

Fulke AB, Ratanpal S, Sonker S (2024) Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Mar Pollut Bull 206:116707. https://doi.org/10.1016/j.marpolbul.2024.116707

Article  CAS  PubMed  Google Scholar 

Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2020) The fungal cell wall: Candida, Cryptococcus, and Aspergillus Species. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02993

Ge W, Zamri D, Mineyama H, Valix M (2011) Bioaccumulation of heavy metals on adapted Aspergillus foetidus. Adsorption 17:901–910. https://doi.org/10.1007/s10450-011-9359-x

Article  CAS  Google Scholar 

Giri SS, Kim HJ, Jung WJ, Bin Lee S, Joo SJ, Gupta SK, Park SC (2024) Probiotics in addressing heavy metal toxicities in fish farming: current progress and perspective. Ecotoxicol Environ Saf 282:116755. https://doi.org/10.1016/j.ecoenv.2024.116755

Article  CAS  PubMed  Google Scholar 

Grąz M, Pawlikowska-Pawlęga B, Jarosz-Wilkołazka A (2011) Growth inhibition and intracellular distribution of Pb ions by the white-rot fungus Abortiporus biennis. Int Biodeterior Biodegradation 65:124–129. https://doi.org/10.1016/j.ibiod.2010.08.010

Article  CAS  Google Scholar 

Greenberg AE, Trussell RR, Clesceri LS (1985) Standard methods for the examination of water and wastewater. 16. Washington. DC: American Public Health Association, pp 146–150.

Idrees M, Ali S, Rehman A, Zajif Hussain S, Abbas Bukhari D (2023) Uptake of lead by bacteria isolated from industrial effluents and their potential use in bioremediation of wastewater. Saudi J Biol Sci 30:103740. https://doi.org/10.1016/j.sjbs.2023.103740

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 51:482–487. https://doi.org/10.1007/s12088-011-0110-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaminskyj S, Jilkine K, Szeghalmi A, Gough K (2008) High spatial resolution analysis of fungal cell biochemistry—bridging the analytical gap using synchrotron FTIR spectromicroscopy. FEMS Microbiol Lett 284:1–8. https://doi.org/10.1111/j.1574-6968.2008.01162.x

Article  CAS  PubMed  Google Scholar 

Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104. https://doi.org/10.1016/S0960-8524(98)00192-8

Article  CAS  Google Scholar 

Khan I, Aftab M, Shakir S, Ali M, Qayyum S, Rehman MU, Haleem KS, Touseef I (2019a) Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ Monit Assess 191:585. https://doi.org/10.1007/s10661-019-7769-5

Article  CAS  PubMed  Google Scholar 

Khan I, Ali M, Aftab M, Shakir S, Qayyum S, Haleem KS, Tauseef I (2019b) Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ Monit Assess 191:622. https://doi.org/10.1007/s10661-019-7781-9

Article  CAS  PubMed  Google Scholar 

Kingsley MT, Bohlool BB (1992) Extracellular polysaccharide is not responsible for aluminum tolerance of Rhizobium leguminosarum bv. Phaseoli CIAT899. Appl Environ Microbiol 58:1095–1101. https://doi.org/10.1128/aem.58.4.1095-1101.1992

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuma SV, Pascal LF, Meeran M (2020) Comprehensive analysis on the physical, chemical, nutrient, heavy metal and microbiological parameters at selected stations of Buckingham Canal, Chennai, Tamil Nadu, India. Environ Contaminants Rev 3:77–86

Google Scholar 

Kumar S, .M. and P.L. and T.S. and P.M. and D.K. and P.D. and R.R. and S.A. and M.M (2018) Analysis of a few heavy metals in Buckingham Canal water, Chennai, Tamil Nadu, India, pp 232–235.

Kumar R, Singh P, Dhir B, Sharma AK, Mehta D (2014) Potential of some fungal and bacterial species in bioremediatio

留言 (0)

沒有登入
gif