Silva I, Silva J, Ferreira R, Trigo D (2021) Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurol Res Pract 3:5. https://doi.org/10.1186/s42466-021-00102-7
Article PubMed PubMed Central Google Scholar
Kang DE, Pietrzik CU, Baum L et al (2000) Modulation of amyloid β-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor–related protein pathway. J Clin Invest 106:1159–1166. https://doi.org/10.1172/jci11013
Article PubMed PubMed Central Google Scholar
Yamada K, Iwatsubo T (2024) Involvement of the glymphatic/meningeal lymphatic system in Alzheimer’s disease: insights into proteostasis and future directions. Cell Mol Life Sci 81:192. https://doi.org/10.1007/s00018-024-05225-z
Article PubMed PubMed Central Google Scholar
Ringstad G (2024) Glymphatic imaging: a critical look at the DTI-ALPS index. Neuroradiology 66:157–160. https://doi.org/10.1007/s00234-023-03270-2
Taoka T, Masutani Y, Kawai H et al (2017) Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol 35:172–178. https://doi.org/10.1007/s11604-017-0617-z
Taoka T, Ito R, Nakamichi R et al (2021) Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn J Radiol 40:147–158. https://doi.org/10.1007/s11604-021-01187-5
Article PubMed PubMed Central Google Scholar
Bae YJ, Kim J-M, Choi BS et al (2023) Glymphatic function assessment in Parkinson’s disease using diffusion tensor image analysis along the perivascular space. Parkinsonism Relat Disord 114:105767. https://doi.org/10.1016/j.parkreldis.2023.105767
Hong H, Tozer DJ, Markus HS (2024) Relationship of Perivascular Space markers with Incident Dementia in Cerebral Small Vessel Disease. Stroke 55:1032–1040. https://doi.org/10.1161/strokeaha.123.045857
Article PubMed PubMed Central Google Scholar
Heo CM, Lee DA, Park KM et al (2022) Glymphatic system dysfunction in patients with early chronic kidney disease. Front Neurol 13:976089. https://doi.org/10.3389/fneur.2022.976089
Article PubMed PubMed Central Google Scholar
Yu S, Jiang H, Yu L et al (2024) DTI-ALPS index decreased in patients with type 2 diabetes Mellitus. Front Neurosci 18:1383780. https://doi.org/10.3389/fnins.2024.1383780
Article PubMed PubMed Central Google Scholar
Wu L, Zhang Z, Liang X et al (2024) Glymphatic system dysfunction in recovered patients with mild COVID-19: a DTI-ALPS study. iScience 27:108647. https://doi.org/10.1016/j.isci.2023.108647
Wang J, Zhou Y, Zhang K et al (2023) Glymphatic function plays a protective role in ageing-related cognitive decline. Age Ageing 52:afad107. https://doi.org/10.1093/ageing/afad107
Article PubMed PubMed Central Google Scholar
Steward CE, Venkatraman VK, Lui E et al (2021) Assessment of the DTI-ALPS parameter along the Perivascular Space in older adults at risk of Dementia. J Neuroimaging 31:569–578. https://doi.org/10.1111/jon.12837
Dooneief G, Marder K, Tang M-X, Stern Y (1996) The clinical dementia rating scale. Neurology 46:1746–1749. https://doi.org/10.1212/wnl.46.6.1746
Kim TH, Jhoo JH, Park JH et al (2010) Korean version of Mini Mental Status Examination for Dementia Screening and its’ short form. Psychiatry Invest 7:102–108. https://doi.org/10.4306/pi.2010.7.2.102
Lee DY, Lee KU, Lee JH et al (2004) A normative study of the CERAD neuropsychological assessment battery in the Korean elderly. J Int Neuropsychol Soc 10:72–81. https://doi.org/10.1017/s1355617704101094
Koivumäki M, Ekblad L, Lantero-Rodriguez J et al (2024) Blood biomarkers of neurodegeneration associate differently with amyloid deposition, medial temporal atrophy, and cerebrovascular changes in APOE ε4-enriched cognitively unimpaired elderly. Alzheimers Res Ther 16:112. https://doi.org/10.1186/s13195-024-01477-w
Article PubMed PubMed Central Google Scholar
Lim YY, Mormino EC, Initiative F, the ADN et al (2017) APOE genotype and early β-amyloid accumulation in older adults without dementia. Neurology 89:1028–1034. https://doi.org/10.1212/wnl.0000000000004336
Article PubMed PubMed Central Google Scholar
Zeng X, Chen Y, Sehrawat A et al (2024) Alzheimer blood biomarkers: practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting. Mol Neurodegener 19:40. https://doi.org/10.1186/s13024-024-00711-1
Article PubMed PubMed Central Google Scholar
Rózga M, Bittner T, Batrla R, Karl J (2019) Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement (Amst) 11:291–300. https://doi.org/10.1016/j.dadm.2019.02.002
Yeh F (2021) DSI studio. Zenodo. https://doi.org/10.5281/zenodo.4978980
Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093. https://doi.org/10.1038/ng.440
Article PubMed PubMed Central Google Scholar
Shi D, Xie S, Li A et al (2022) APOE-ε4 modulates the association among plasma Aβ42/Aβ40, vascular diseases, neurodegeneration and cognitive decline in non-demented elderly adults. Transl Psychiatry 12:128. https://doi.org/10.1038/s41398-022-01899-w
Article PubMed PubMed Central Google Scholar
Pais MV, Forlenza OV, Diniz BS (2023) Plasma biomarkers of Alzheimer’s disease: a review of available assays, recent developments, and implications for clinical practice. J Alzheimer’s Dis Rep 7:355–380. https://doi.org/10.3233/adr-230029
Wang J, Gao L, Liu J et al (2022) The Association of Plasma Amyloid-β and cognitive decline in cognitively Unimpaired Population. Clin Interv Aging 17:555–565. https://doi.org/10.2147/cia.s357994
Article PubMed PubMed Central Google Scholar
Pérez-Grijalba V, Romero J, Pesini P et al (2019) Plasma Aβ42/40 ratio detects early stages of Alzheimer’s Disease and correlates with CSF and neuroimaging biomarkers in the AB255 study. J Prev Alzheimer’s Dis 6:34–41. https://doi.org/10.14283/jpad.2018.41
Bun S, Ito D, Tezuka T et al (2023) Performance of plasma Aβ42/40, measured using a fully automated immunoassay, across a broad patient population in identifying amyloid status. Alzheimer’s Res Ther 15:149. https://doi.org/10.1186/s13195-023-01296-5
Doecke JD, Pérez-Grijalba V, Fandos N et al (2020) Total Aβ42/Aβ40 ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. Neurology 94. https://doi.org/10.1212/WNL.0000000000009240
Fandos N, Pérez-Grijalba V, Pesini P et al (2017) Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimer’s Dement Diagnosis Assess Dis Monit 8:179–187. https://doi.org/10.1016/j.dadm.2017.07.004
de Rojas I, Romero J, Rodríguez-Gomez O et al (2018) Correlations between plasma and PET beta-amyloid levels in individuals with subjective cognitive decline: the Fundació ACE Healthy Brain Initiative (FACEHBI). Alzheimers Res Ther 10:119. https://doi.org/10.1186/s13195-018-0444-1
Article PubMed PubMed Central Google Scholar
Liang T, Chang F, Huang Z et al (2023) Evaluation of glymphatic system activity by diffusion tensor image analysis along the perivascular space (DTI-ALPS) in dementia patients. Br J Radiol 96:20220315. https://doi.org/10.1259/bjr.20220315
留言 (0)