Pallidal and motor cortical interactions determine gait initiation dynamics in Parkinson's disease

Abstract

Gait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown. To address these questions, we streamed electrocorticography (ECoG) potentials from the premotor and primary motor cortices, as well as local field potentials (LFPs) from the globus pallidus in five people with PD exhibiting gait and balance dysfunction during a cued gait initiation task. Amplitude and timing of APA were evaluated with force plates and synchronized to the neural data. Subjects performed gait initiation trials under ON and LOW levodopa conditions to assess effects of medication on APA metrics and underlying neural dynamics. All subjects demonstrated pallidal and cortical oscillatory changes during different phases of gait initiation. Grouped analysis revealed that from quiet standing to the first foot step, pallidal beta power showed stepwise decrease and broadband gamma power increases, whereas cortical potentials showed low frequency (theta, alpha, beta) power decrease during gait initiation, regardless of medication state. The pallidum and motor cortices also became increasingly coherent during gait initiation compared to quiet standing prior to APA onset. Using linear mixed models, we found that while pallidal gamma powers are predictive of APA scaling, pallidal-cortical coherence (theta, alpha, beta) and premotor-M1 gamma coherence are predictive of APA timing. Our study is the first detailed characterization of basal-ganglia cortical circuit dynamics during human gait initiation. We identified significant pallidal motor cortical power and coherence changes that underlie the amplitude and timing of APA which appear to be independent of medication states of the study subjects. Our results provide evidence for a model where synchronized premotor and motor cortical activities transiently couple with the globus pallidus to regulate the timing of postural responses, and local pallidal activity regulate the amplitude of postural changes during gait initiation. It suggests that abnormal pallidal outflow and synchronization between the pallidum and motor cortices may be a pathophysiological mechanism underlying disordered postural response in Parkinson's disease.

Competing Interest Statement

The authors declare no competing financial interests, apart from D.D.W., who has a relationship with Medtronic, Boston Scientific Corp, and Iota Biosciences, Inc. that includes consulting or advisory work.

Clinical Trial

NCT 03582891

Funding Statement

This study was funded by the Michael J Fox Foundation Grant MNS135499A, NIH R01NS130183. All funding was acquired by D.D.W.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The Institutional Review Board of the University of California, San Francisco gave ethical approval for this work.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

Data from this study can be made available upon reasonable request, following patient confidentiality and disclosure standards.

留言 (0)

沒有登入
gif