Vialle R, Thévenin-Lemoine C, Mary P (2013) Neuromuscular scoliosis. Orthop Traumatol Surg Res 99:S124–S139. https://doi.org/10.1016/j.otsr.2012.11.002
Article PubMed CAS Google Scholar
Wishart BD, Kivlehan E (2021) Neuromuscular scoliosis: when, who, why and outcomes. Phys Med Rehabil Clin N Am 32:547–556. https://doi.org/10.1016/j.pmr.2021.02.007
Drummond D, Breed AL, Narechania R (1985) Relationship of spine deformity and pelvic obliquity on sitting pressure distributions and decubitus ulceration. J Pediatr Orthop 5:396–402. https://doi.org/10.1097/01241398-198507000-00002
Article PubMed CAS Google Scholar
Yen W, Gartenberg A, Cho W (2021) Pelvic obliquity associated with neuromuscular scoliosis in cerebral palsy: cause and treatment. Spine Deform 9:1259–1265. https://doi.org/10.1007/s43390-021-00346-y
Hägglund G (2020) Association between pelvic obliquity and scoliosis, hip displacement and asymmetric hip abduction in children with cerebral palsy: a cross-sectional registry study. BMC Musculoskelet Disord 21:464. https://doi.org/10.1186/s12891-020-03484-y
Article PubMed PubMed Central Google Scholar
Modi HN, Suh SW, Song HR, Yang JH, Jajodia N (2010) Evaluation of pelvic fixation in neuromuscular scoliosis: a retrospective study in 55 patients. Int Orthop 34:89–96. https://doi.org/10.1007/s00264-008-0703-z
Nielsen E, Andras LM, Bellaire LL, Fletcher ND, Minkara A, Vitale MG, Troy M, Glotzbecker M, Skaggs DL (2019) Don’t you wish you had fused to the pelvis the first time: a comparison of reoperation rate and correction of pelvic obliquity. Spine 44:E465–E469. https://doi.org/10.1097/BRS.0000000000002888
Douleh DG, Greig D, Thompson R, Garg S (2021) When should instrumentation to the pelvis be considered in minimally ambulatory adolescents with meuromuscular scoliosis? J Pediatr Orthop 41:S53–S58. https://doi.org/10.1097/BPO.0000000000001821
Article PubMed PubMed Central Google Scholar
Miyanji F, Nasto LA, Sponseller PD et al (2018) Assessing the risk-benefit ratio of scoliosis surgery in cerebral palsy: surgery is worth it. J Bone Joint Surg Am 100:556–563. https://doi.org/10.2106/JBJS.17.00621
Suresh KV, Ikwuezunma I, Margalit A, Sponseller PD (2021) Spinal fusion with sacral alar iliac pelvic fixation in severe neuromuscular scoliosis. JBJS Essent Surg Techniques 11. https://doi.org/10.2106/JBJS.ST.20.00060
Bachman DR, Singh LK, Anderson JT, Schwend RM (2021) An intraoperative laterally placed distractor for gradual load sharing correction of severe spastic neuromuscular spinal deformity. Spine Deform 9:1137–1144. https://doi.org/10.1007/s43390-021-00316-4
Clark JA, Hsu LC, Yau AC (1975) Viscoelastic behaviour of deformed spines under correction with halo pelvic distraction. Clin Orthop Relat Res 110:90–111. https://doi.org/10.1097/00003086-197507000-00014
Bane T, Luhmann SJ (2022) Predicting the impact of intraoperative halo-femoral traction from preoperative imaging in neuromuscular scoliosis. Spine Deform 10:679–687. https://doi.org/10.1007/s43390-021-00461-w
Takeshita K, Lenke LG, Bridwell TKH, Kim YJ, Sides B, Hensley M (2006) Analysis of patients with nonambulatory neuromuscular scoliosis surgically treated to the pelvis with intraoperative halo-femoral traction. Spine 31:2381–2385. https://doi.org/10.1097/01.brs.0000238964.73390.b6
Jackson TJ, Yaszay B, Pahys JM et al (2018) Intraoperative traction may be a viable alternative to anterior surgery in cerebral palsy scoliosis ≥ 100 degrees. J Pediatr Orthop 38:e278–e284. https://doi.org/10.1097/BPO.0000000000001151
Vialle R, Delecourt C, Morin C (2006) Surgical treatment of scoliosis with pelvic obliquity in cerebral palsy - the influence of intraoperative traction. Spine 31:1461–1466. https://doi.org/10.1097/01.brs.0000219874.46680.87
Barik S, Prajapati S, Raj V, Vatkar A, Kumar V (2023) Role of intra-operative traction in deformity correction in neuromuscular scoliosis: a systematic review and meta-analysis. Spine Deform 11:787–796. https://doi.org/10.1007/s43390-023-00682-1
Hu M, Lai A, Zhang Z, Chen J, Lin T, Ma J, Wang C, Meng Y, Zhou X (2021) Intraoperative halo-femoral traction during posterior spinal arthrodesis for adolescent idiopathic scoliosis curves between 70° and 100°: a randomized controlled trial. J Neurosurg Spine 36:78–85. https://doi.org/10.3171/2021.2.SPINE21184
Even JL, Richards JE, Crosby CG, Kregor PJ, Mitchell EJ, Jahangir AA, Tressler MA, Obremskey WT (2012) Preoperative skeletal versus cutaneous traction for femoral shaft fractures treated within 24 hours. J Orthop Trauma 26:e177–e182. https://doi.org/10.1097/BOT.0b013e31823a8dae
Qiao J, Xiao L, Xu L, Liu Z, Sun X, Qian B, Zhu Z, Qiu Y (2018) Skull-femoral traction after posterior release for correction of adult severe scoliosis: efficacy and complications. BMC Musculoskelet Disord 19:277. https://doi.org/10.1186/s12891-018-2207-3
Article PubMed PubMed Central Google Scholar
Sink EL, Karol LA, Sanders J, Birch JG, Johnston CE, Herring JA (2001) Efficacy of perioperative halo-gravity traction in the treatment of severe scoliosis in children. J Pediatr Orthop 21:519–524. https://doi.org/10.1097/00004694-200107000-00020
Article PubMed CAS Google Scholar
Mehlman CT, Al-Sayyad MJ, Crawford AH (2004) Effectiveness of spinal release and halo-femoral traction in the management of severe spinal deformity. J Pediatr Orthop 24:667–673. https://doi.org/10.1097/01241398-200411000-00014
Austin DC, Donegan D, Mehta S (2015) Low complication rates associated with the application of lower extremity traction pins. J Orthop Trauma 29:e259–e265. https://doi.org/10.1097/BOT.0000000000000329
Specht LM, Gupta S, Egol KA, Koval KJ (2004) Heterotopic ossification of the quadriceps following distal femoral traction: a report of three cases and a review of the literature. J Orthop Trauma 18:241–246. https://doi.org/10.1097/00005131-200404000-00010
Floccari L, Murphy J, Glotzbecker M, Spitzer A, Gomez J, Fletcher N (2022) Absent baseline intraoperative neuromonitoring signals part 2: neuromuscular scoliosis. J Pediatr Orthop Soc North Am 4:1–6. https://doi.org/10.55275/JPOSNA-2022-0005
Shrader MW, DiCindio S, Kenny KG, Franco AJ, Zhang R, Theroux MC, Rogers KJ, Shah SA (2023) Transcranial electric motor evoked potential monitoring during scoliosis surgery in children with cerebral palsy and active seizure disorder: is it feasible and safe? Spine Deform 11:1461–1466. https://doi.org/10.1007/s43390-023-00730-w
DiCindio S, Theroux M, Shah S, Miller F, Dabney K, Brislin RP, Schwartz D (2003) Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine 28:1851–1855. https://doi.org/10.1097/01.BRS.0000083202.62956.A8
Sullivan GM, Feinn R (2012) Using effect size-or why the p value is not enough. J Grad Med Educ 4:279–282. https://doi.org/10.4300/JGME-D-12-00156.1
Article PubMed PubMed Central Google Scholar
Keeler KA, Lenke LG, Good CR, Bridwell KH, Sides B, Luhmann SJ (2010) Spinal fusion for spastic neuromuscular scoliosis is anterior releasing necessary when intraoperative halo-femoral traction is used? Spine 35:E427–E433. https://doi.org/10.1097/BRS.0b013e3181d9527e
Rinella A, Lenke L, Whitaker C, Kim Y, Park SS, Peelle M, Edwards C, Bridwell K (2005) Perioperative halo-gravity traction in the treatment of severe scoliosis and kyphosis. Spine 30:475–482. https://doi.org/10.1097/01.brs.0000153707.80497.a2
Mac-Thiong JM, Labelle H, Poitras B, Rivard CH, Joncas J (2004) The effect of intraoperative traction during posterior spinal instrumentation and fusion for adolescent idiopathic scoliosis. Spine 29:1549–1554. https://doi.org/10.1097/01.BRS.0000131421.66635.AF
留言 (0)