Overexpression of BMAL-1 is related to progression of urothelial carcinoma in arsenic exposure area

Tseng CH (2002) An overview on peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Angiology 53(5):529–537. https://doi.org/10.1177/000331970205300505

Article  PubMed  Google Scholar 

Tseng WP (1989) Blackfoot disease in Taiwan: a 30-year follow-up study. Angiology 40(6):547–558. https://doi.org/10.1177/000331978904000606

Article  CAS  PubMed  Google Scholar 

Tseng CH, Chong CK, Tseng CP, Centeno JA (2007) Blackfoot disease in Taiwan: its link with inorganic arsenic exposure from drinking water. Ambio 36(1):82–84. https://doi.org/10.1579/0044-7447(2007)36[82:bditil]2.0.co;2

Article  CAS  PubMed  Google Scholar 

Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY (1988) Atherogenicity and carcinogenicity of high-arsenic artesian well water multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 8(5):452–460. https://doi.org/10.1161/01.atv.8.5.452

Article  CAS  PubMed  Google Scholar 

Chiou HY, Chiou ST, Hsu YH, Chou YL, Tseng CH, Wei ML, Chen CJ (2001) Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol 153(5):411–418. https://doi.org/10.1093/aje/153.5.411

Article  CAS  PubMed  Google Scholar 

Chang CW, Ou CH, Yu CC, Lo CW, Tsai CY, Cheng PY, Chen YT, Huang HC, Wu CC, Li CC, Lee HY (2021) Comparative analysis of patients with upper urinary tract urothelial carcinoma in black-foot disease endemic and non-endemic area. BMC Cancer 21(1):80. https://doi.org/10.1186/s12885-021-07799-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CH, Grollman AP, Huang CY, Shun CT, Sidorenko VS, Hashimoto K, Moriya M, Turesky RJ, Yun BH, Tsai K, Wu S, Chuang PY, Tang CH, Yang WH, Tzai TS, Tsai YS, Dickman KG, Pu YS (2021) Additive Effects of arsenic and aristolochic acid in chemical carcinogenesis of upper urinary tract urothelium. Cancer Epidemiol Biomarkers Prev 30(2):317–325. https://doi.org/10.1158/1055-9965.Epi-20-1090

Article  CAS  PubMed  Google Scholar 

Wu CC, Chen MC, Huang YK, Huang CY, Lai LA, Chung CJ, Shiue HS, Pu YS, Lin YC, Han BC, Wang YH, Hsueh YM (2013) Environmental tobacco smoke and arsenic methylation capacity are associated with urothelial carcinoma. J Formos Med Assoc 112(9):554–560. https://doi.org/10.1016/j.jfma.2013.05.012

Article  CAS  PubMed  Google Scholar 

Wang YH, Yeh SD, Shen KH, Shen CH, Juang GD, Hsu LI, Chiou HY, Chen CJ (2009) A significantly joint effect between arsenic and occupational exposures and risk genotypes/diplotypes of CYP2E1, GSTO1 and GSTO2 on risk of urothelial carcinoma. Toxicol Appl Pharmacol 241(1):111–118. https://doi.org/10.1016/j.taap.2009.08.008

Article  CAS  PubMed  Google Scholar 

Hsu LI, Chiu AW, Pu YS, Wang YH, Huan SK, Hsiao CH, Hsieh FI, Chen CJ (2008) Comparative genomic hybridization study of arsenic-exposed and non-arsenic-exposed urinary transitional cell carcinoma. Toxicol Appl Pharmacol 227(2):229–238. https://doi.org/10.1016/j.taap.2007.10.024

Article  CAS  PubMed  Google Scholar 

Chung CJ, Huang CJ, Pu YS, Su CT, Huang YK, Chen YT, Hsueh YM (2008) Polymorphisms in cell cycle regulatory genes, urinary arsenic profile and urothelial carcinoma. Toxicol Appl Pharmacol 232(2):203–209. https://doi.org/10.1016/j.taap.2008.06.011

Article  CAS  PubMed  Google Scholar 

Chen WT, Hung WC, Kang WY, Huang YC, Chai CY (2007) Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology 51(6):785–792. https://doi.org/10.1111/j.1365-2559.2007.02871.x

Article  PubMed  Google Scholar 

Huang CY, Pu YS, Shiue HS, Chen WJ, Lin YC, Hsueh YM (2016) Polymorphisms of human 8-oxoguanine DNA glycosylase 1 and 8-hydroxydeoxyguanosine increase susceptibility to arsenic methylation capacity-related urothelial carcinoma. Arch Toxicol 90(8):1917–1927. https://doi.org/10.1007/s00204-015-1590-x

Article  CAS  PubMed  Google Scholar 

Chang SJ, Bin PJ, Luo CW, Chai CY (2022) CHD4 plays a critical role in arsenite-induced oxidative damage in human urothelial carcinoma. Pathol Res Pract 240:154173. https://doi.org/10.1016/j.prp.2022.154173

Article  CAS  PubMed  Google Scholar 

Wu CC, Huang YK, Chung CJ, Huang CY, Pu YS, Shiue HS, Lai LA, Lin YC, Su CT, Hsueh YM (2013) Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl Pharmacol 272(1):30–36. https://doi.org/10.1016/j.taap.2013.05.019

Article  CAS  PubMed  Google Scholar 

Ooki A, Begum A, Marchionni L, VandenBussche CJ, Mao S, Kates M, Hoque MO (2018) Arsenic promotes the COX2/PGE2-SOX2 axis to increase the malignant stemness properties of urothelial cells. Int J Cancer 143(1):113–126. https://doi.org/10.1002/ijc.31290

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirkley AG, Carmean CM, Ruiz D, Ye H, Regnier SM, Poudel A, Hara M, Kamau W, Johnson DN, Roberts AA, Parsons PJ, Seino S, Sargis RM (2018) Arsenic exposure induces glucose intolerance and alters global energy metabolism. Am J Physiol Regul Integr Comp Physiol 314(2):R294-r303. https://doi.org/10.1152/ajpregu.00522.2016

Article  CAS  PubMed  Google Scholar 

Zhu N, Li Y, Jiao J, Yun Y, Ku T, Liang D, Sang N (2020) Investigating photo-driven arsenics’ behavior and their glucose metabolite toxicity by the typical metallic oxides in ambient PM(2.5). Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2020.110162

Article  PubMed  PubMed Central  Google Scholar 

Niño SA, Morales-Martínez A, Chi-Ahumada E, Carrizales L, Salgado-Delgado R, Pérez-Severiano F, Díaz-Cintra S, Jiménez-Capdeville ME, Zarazúa S (2019) Arsenic exposure contributes to the bioenergetic damage in an Alzheimer’s disease model. ACS Chem Neurosci 10(1):323–336. https://doi.org/10.1021/acschemneuro.8b00278

Article  CAS  PubMed  Google Scholar 

Litlekalsoy J, Rostad K, Kalland KH, Hostmark JG, Laerum OD (2016) Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes. BMC Cancer 16:549. https://doi.org/10.1186/s12885-016-2580-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiménez-Ortega V, Cardinali DP, Fernández-Mateos MP, Ríos-Lugo MJ, Scacchi PA, Esquifino AI (2010) Effect of cadmium on 24-hour pattern in expression of redox enzyme and clock genes in rat medial basal hypothalamus. Biometals 23(2):327–337. https://doi.org/10.1007/s10534-010-9292-6

Article  CAS  PubMed  Google Scholar 

Tang Q, Cheng B, Xie M, Chen Y, Zhao J, Zhou X, Chen L (2017) Circadian clock gene bmal1 inhibits tumorigenesis and increases paclitaxel sensitivity in tongue squamous cell carcinoma. Cancer Res 77(2):532–544. https://doi.org/10.1158/0008-5472.Can-16-1322

Article  CAS  PubMed  Google Scholar 

Jung CH, Kim EM, Park JK, Hwang SG, Moon SK, Kim WJ, Um HD (2013) Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep 29(6):2109–2113. https://doi.org/10.3892/or.2013.2381

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu CM, Lin SF, Lu CT, Lin PM, Yang MY (2012) Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumour Biol 33(1):149–155. https://doi.org/10.1007/s13277-011-0258-2

Article  CAS  PubMed  Google Scholar 

de Assis LVM, Kinker GS, Moraes MN, Markus RP, Fernandes PA, Castrucci AML (2018) Expression of the circadian clock gene BMAL1 positively correlates with antitumor immunity and patient survival in metastatic melanoma. Front Oncol 8:185. https://doi.org/10.3389/fonc.2018.00185

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Li S, Li X, Li B, Li Y, Xia K, Yang Y, Aman S, Wang M, Wu H (2019) Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int 19:182. https://doi.org/10.1186/s12935-019-0902-2

Article  CAS 

留言 (0)

沒有登入
gif