Hernandez RK, Wade SW, Reich A, Pirolli M, Liede A, Lyman GH (2018) Incidence of bone metastases in patients with solid tumors: analysis of oncology electronic medical records in the United States. BMC Cancer 18:44. https://doi.org/10.1186/s12885-017-3922-0
Article PubMed PubMed Central Google Scholar
Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ et al (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366:643–648. https://doi.org/10.1016/S0140-6736(05)66954-1
Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y et al (2013) The NOMS Framework: Approach to the treatment of spinal metastatic tumors. Oncologist 18:744–751. https://doi.org/10.1634/theoncologist.2012-0293
Article PubMed PubMed Central Google Scholar
Feler J, Sun F, Bajaj A, Hagan M, Kanekar S, Sullivan PLZ et al (2022) Complication avoidance in Surgical Management of Vertebral Column tumors. Curr Oncol 29:1442–1454. https://doi.org/10.3390/curroncol29030121
Article PubMed PubMed Central Google Scholar
Barzilai O, Fisher CG, Bilsky MH (2018) State of the Art treatment of spinal metastatic disease. Neurosurgery 82:757–769. https://doi.org/10.1093/neuros/nyx567
Wise JJ, Fischgrund JS, Herkowitz HN, Montgomery D, Kurz LT (1999) Complication, Survival Rates, and risk factors of surgery for metastatic disease of the spine. Spine 24:1943
Article CAS PubMed Google Scholar
Bateni SB, Meyers FJ, Bold RJ, Canter RJ (2016) Increased rates of prolonged length of Stay, Readmissions, and discharge to Care Facilities among postoperative patients with disseminated malignancy: implications for clinical practice. PLoS ONE 11:e0165315. https://doi.org/10.1371/journal.pone.0165315
Article CAS PubMed PubMed Central Google Scholar
Groot OQ, Ogink PT, Paulino Pereira NR, Ferrone ML, Harris MB, Lozano-Calderon SA et al (2019) High risk of symptomatic venous thromboembolism after surgery for spine metastatic bone lesions: a retrospective study. Clin Orthop 477:1674–1686. https://doi.org/10.1097/CORR.0000000000000733
Article PubMed PubMed Central Google Scholar
Paulino Pereira NR, Ogink PT, Groot OQ, Ferrone ML, Hornicek FJ, van Dijk CN et al (2019) Complications and reoperations after surgery for 647 patients with spine metastatic disease. Spine J 19:144–156. https://doi.org/10.1016/j.spinee.2018.05.037
Karhade AV, Thio QCBS, Ogink PT, Bono CM, Ferrone ML, Oh KS et al (2019) Predicting 90-Day and 1-Year mortality in spinal metastatic disease: Development and Internal Validation. Neurosurgery 85:E671. https://doi.org/10.1093/neuros/nyz070
Karhade AV, Ahmed AK, Pennington Z, Chara A, Schilling A, Thio QCBS et al (2020) External validation of the SORG 90-day and 1-year machine learning algorithms for survival in spinal metastatic disease. Spine J 20:14–21. https://doi.org/10.1016/j.spinee.2019.09.003
Shah AA, Karhade AV, Park HY, Sheppard WL, Macyszyn LJ, Everson RG et al (2021) Updated external validation of the SORG machine learning algorithms for prediction of ninety-day and one-year mortality after surgery for spinal metastasis. Spine J 21:1679–1686. https://doi.org/10.1016/j.spinee.2021.03.026
Yang J-J, Chen C-W, Fourman MS, Bongers MER, Karhade AV, Groot OQ et al (2021) International external validation of the SORG machine learning algorithms for predicting 90-day and one-year survival of patients with spine metastases using a Taiwanese cohort. Spine J 21:1670–1678. https://doi.org/10.1016/j.spinee.2021.01.027
Bongers MER, Karhade AV, Villavieja J, Groot OQ, Bilsky MH, Laufer I et al (2020) Does the SORG algorithm generalize to a contemporary cohort of patients with spinal metastases on external validation? Spine J 20:1646–1652. https://doi.org/10.1016/j.spinee.2020.05.003
Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med 13:1. https://doi.org/10.1186/s12916-014-0241-z
Article PubMed PubMed Central Google Scholar
Groot OQ, Bindels BJJ, Ogink PT, Kapoor ND, Twining PK, Collins AK et al (2021) Availability and reporting quality of external validations of machine-learning prediction models with orthopedic surgical outcomes: a systematic review. Acta Orthop 92:385–393. https://doi.org/10.1080/17453674.2021.1910448
Article PubMed PubMed Central Google Scholar
Altman DG, Vergouwe Y, Royston P, Moons KGM (2009) Prognosis and prognostic research: validating a prognostic model. BMJ 338:b605. https://doi.org/10.1136/bmj.b605
Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M (2021) External validation of prognostic models: what, why, how, when and where? Clin Kidney J 14:49–58. https://doi.org/10.1093/ckj/sfaa188
Groot OQ, Ogink PT, Lans A, Twining PK, Kapoor ND, DiGiovanni W et al (2022) Machine learning prediction models in orthopedic surgery: a systematic review in transparent reporting. J Orthop Res 40:475–483. https://doi.org/10.1002/jor.25036
Katagiri H, Okada R, Takagi T, Takahashi M, Murata H, Harada H et al (2014) New prognostic factors and scoring system for patients with skeletal metastasis. Cancer Med 3:1359–1367. https://doi.org/10.1002/cam4.292
Article PubMed PubMed Central Google Scholar
Oken MM (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–656
Article CAS PubMed Google Scholar
Kirshblum S, Waring W (2014) Updates for the International standards for neurological classification of spinal cord Injury. Phys Med Rehabil Clin N Am 25:505–517. https://doi.org/10.1016/j.pmr.2014.04.001
Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P et al (2011) Updating and validating the Charlson Comorbidity Index and score for Risk Adjustment in Hospital discharge abstracts using data from 6 countries. Am J Epidemiol 173:676–682. https://doi.org/10.1093/aje/kwq433
Stekhoven DJ, Bühlmann P (2012) MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118. https://doi.org/10.1093/bioinformatics/btr597
Article CAS PubMed Google Scholar
Steyerberg EW, Vergouwe Y (2014) Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J 35:1925–1931. https://doi.org/10.1093/eurheartj/ehu207
Article PubMed PubMed Central Google Scholar
Calster BV, Nieboer D, Vergouwe Y, Cock BD, Pencina MJ, Steyerberg EW (2016) A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol 74:167–176. https://doi.org/10.1016/j.jclinepi.2015.12.005
Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Bossuyt P et al (2019) Calibration: the Achilles heel of predictive analytics. BMC Med 17:230. https://doi.org/10.1186/s12916-019-1466-7
Article PubMed PubMed Central Google Scholar
Carter JV, Pan J, Rai SN, Galandiuk S (2016) ROC-ing along: evaluation and interpretation of receiver operating characteristic curves. Surgery 159:1638–1645. https://doi.org/10.1016/j.surg.2015.12.029
Vickers AJ, Elkin EB (2006) Decision curve analysis: a Novel Method for evaluating prediction models. Med Decis Mak 26:565–574. https://doi.org/10.1177/0272989X06295361
Karhade AV, Schwab JH (2020) CORR synthesis: when should we be skeptical of clinical prediction models? Clin Orthop 478:2722–2728. https://doi.org/10.1097/CORR.0000000000001367
留言 (0)