Short-term responses of identified soil beneficial-bacteria to the insecticide fipronil: toxicological impacts

Abdelwahed S, Saadouli I, Kouidhi S, Masmoudi AS, Cherif A, Mnif W, Mosbah A (2022) A new pioneer colorimetric micro-plate method for the estimation of ammonia production by plant growth promoting rhizobacteria (PGPR). Main Group Chem 21:55–68. https://doi.org/10.3233/MGC-210077

Article  CAS  Google Scholar 

Aebi H (1984) Catalase in vitro. In: Methods in enzymology, vol 105. Academic Press, pp 121–126

Ahamad Khan M, Lone SA, Shahid M, Zeyad MT, Syed A, Ehtram A, Elgorban AM, Verma M, Danish M (2023) Phytogenically synthesized zinc oxide nanoparticles (ZnO-NPs) potentially inhibit the bacterial pathogens: in vitro studies. Toxics 11(5):452. https://doi.org/10.3390/toxics11050452

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahemad M, Khan MS (2012) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71. https://doi.org/10.1016/j.jssas.2011.10.001

Article  CAS  Google Scholar 

Ahmed B, Ameen F, Rizvi A, Ali K, Sonbol H, Zaidi A, Khan MS, Musarrat J (2020) Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS Omega 5:7861–7876. https://doi.org/10.1021/acsomega.9b04084

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47:563–570. https://doi.org/10.1016/j.bjm.2016.04.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fert Soils 12:39–45. https://doi.org/10.1007/BF00369386

Article  CAS  Google Scholar 

Angelini J, Silvina G, Taurian T, Ibáñez F, Tonelli ML, Valetti L, Anzuay MS, Ludueña L, Muñoz V, Fabra A (2013) The effects of pesticides on bacterial nitrogen fixers in peanut-growing area. Arch Microbiol 195(10):683–692. https://doi.org/10.1007/s00203-013-0919-1

Article  CAS  PubMed  Google Scholar 

Aroua I, Abid G, Souissi F, Mannai K, Nebli H, Hattab S, Borgi Z, Jebara M (2019) Identification of two pesticide-tolerant bacteria isolated from Medicago sativa nodule useful for organic soil phytostabilization. Int Microbiol 22:111–120. https://doi.org/10.1007/s10123-018-0033-y

Article  CAS  PubMed  Google Scholar 

Atanasova-Pancevska N (2024) Soil Bacillus spp.—a potent cell factory for antimicrobials against phytopathogens. Bulgarian J Agric Sci 30(2):219–227

Google Scholar 

Bagchi D, Bagchi M, SHassoun EA, Stohs SJ (1995) In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 104:129–140. https://doi.org/10.1016/0300-483X(95)03156-A

Article  CAS  PubMed  Google Scholar 

Bhatt P, Gangola S, Ramola S, Bilal M, Bhatt K, Huang Y, Zhou Z, Chen S (2023) Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol Res 266:127247. https://doi.org/10.1016/j.micres.2022.127247

Article  CAS  PubMed  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

Bric JM, Bostockc RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538. https://doi.org/10.1128/aem.57.2.535-538.1991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Briceno G, Lamilla C, Leiva B, Levio M, Donoso-Pinol P, Schalchli H, Gallardo F, Diez MC (2020) Pesticide-tolerant bacteria isolated from a bio-purification system to remove commonly used pesticides to protect water resources. PLoS ONE 15(6):e0234865. https://doi.org/10.1371/journal.pone.0234865

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casida LE (1977) Microbial metabolic activity in soil as measured by dehydrogenase determinations. Appl Environ Microbiol 34:630–636. https://doi.org/10.1128/aem.34.6.630-636.1977

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandra S, Chakraborty D (2023) Survivability and plant growth promoting traits of Rhizobium aegyptiacum under the stress of fungicides and insecticides. Mycopath 21(1):1–5

Google Scholar 

Chaudhary A, Chaudhary P, Abou Fayssal S, Singh S, Jaiswal DK, Tripathi V, Kumar J (2024) Exploring beneficial microbes and their multifaceted applications: an overview. In: Microbial inoculants: applications for sustainable agriculture, pp 1–28. https://doi.org/10.1007/978-981-97-0633-4_1

Chen D, Li J, Zhao Y, Wu Y (2021) Human exposure of fipronil insecticide and the associated health risk. J Agric Food Chem 70:63–71. https://doi.org/10.1021/acs.jafc.1c05694

Article  CAS  PubMed  Google Scholar 

Cycoń M, Wójcik M, Piotrowska-Seget Z (2009) Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76:494–501. https://doi.org/10.1016/j.chemosphere.2009.03.023

Article  CAS  PubMed  Google Scholar 

Dar MA, Kaushik G, Villarreal-Chiu JF (2019) Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: a review. J Environ Manag 239:24–136. https://doi.org/10.1016/j.jenvman.2019.03.048

Article  CAS  Google Scholar 

Dorjey S, Dolkar D, Sharma R (2017) Plant growth promoting rhizobacteria Pseudomonas: a review. Int J Curr Microbiol Appl Sci 6:1335–1344. https://doi.org/10.20546/ijcmas.2017.607.160

Article  CAS  Google Scholar 

Dubovskiy IM, Martemyanov VV, Vorontsova YL, Rantala MJ, Gryzanova EV, Glupov VV (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Physiol Part C Toxicol Pharmacol 148:1–5. https://doi.org/10.1016/j.cbpc.2008.02.003

Article  CAS  Google Scholar 

Dworkin M, Foster JW (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuentes MS, Colin VL, Amoroso MJ, Benimeli CS (2016) Selection of an actinobacteria mixed culture for chlordane remediation. Pesticide effects on microbial morphology and bioemulsifier production. J Basic Microbiol 56(2):127–137. https://doi.org/10.1002/jobm.201500514

Article  CAS  PubMed  Google Scholar 

Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB (2019) Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 5:e02192. https://doi.org/10.1016/j.heliyon.2019.e02192

Article  PubMed  PubMed Central  Google Scholar 

Gong P, Hong H, Perkins EJ (2015) Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers. Biomark Med 9:1225–1239. https://doi.org/10.2217/bmm.15.58

Article  CAS  PubMed  Google Scholar 

Guima SES, Piubeli F, Bonfá MRL, Pereira RM (2022) New insights into the effect of fipronil on the soil bacterial community. Microorganisms 11:52. https://doi.org/10.3390/microorganisms1101002

Article  PubMed  PubMed Central  Google Scholar 

Gupta RC, Mukherjee IRM, Malik JK, Doss RB, Dettbarn WD, Milatovic D (2019) Insecticides. In: Biomarkers in toxicology. Academic Press, pp 455–475. https://doi.org/10.1016/B978-0-12-814655-2.00026-8

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Gram negative aerobic/microaerophilic rods and cocci. in: Bergey’s manual of determinative bacteriology, vol 93, 9th edn. Williams and Wilkins, Lippincott, Philadelphia, p 168

Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831. https://doi.org/10.1080/00021369.1978.10863261

Article  CAS  Google Scholar 

Inthama P, Pumas P, Pekkoh J, Pathom-Aree W, Pumas C (2021) Plant growth and drought tolerance-promoting bacterium for bioremediation of paraquat pesticide residues in agriculture soils. Front Microbiol 12:604662. https://doi.org/10.3389/fmicb.2021.604662

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif