Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi AR, Abbaszadeh A (2014) Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J Mycol Méd 24(2):e51–e56. https://doi.org/10.1016/j.mycmed.2014.01.063
Article PubMed CAS Google Scholar
Akula S, Nagaraja A, Ravikanth M, Kumar NR, Kalyan Y, Divya D (2021) Antifungal efficacy of lauric acid and caprylic acid - derivatives of virgin coconut oil against Candida albicans. Biomed Biotechn Res J 5(2):229
Al-Essawy A, Rashid I, Mosa A, Ali M (2018) Еffеct of somе еssеntial oils on grеy mould, causеd by Botrytis cinеrеa on tablе grapе at cold-storagе. Arab Univ J Agric Sci 26(2):701–711. https://doi.org/10.21608/ajs.2018.16002
Álvarez-García S, Moumni M, Romanazzi G (2023) Antifungal activity of volatile organic compounds from essential oils against the postharvest pathogens Botrytis cinerea, Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front. Plant Sci., 14. https://doi.org/10.3389/fpls.2023.1274770
Bedekovic T, Brand AC (2022) Microfabrication and its use in investigating fungal biology. Mol Microbiol 117(3):569–577. https://doi.org/10.1111/mmi.14816
Article PubMed CAS Google Scholar
Bellamy S, Xu X, Shaw M (2021) Biocontrol agents to manage brown rot disease on cherry. Eur J Plant Pathol 161(3):493–502. https://doi.org/10.1007/s10658-021-02353-1
Boiteux J, Espino M, Azcarate S, Silva MF, Gomez FJV, Pizzuolo P, de los Fernandez M A (2023) NADES blend for bioactive coating design as a sustainable strategy for postharvest control. Food Chem 406:135054. https://doi.org/10.1016/j.foodchem.2022.135054
Article PubMed CAS Google Scholar
Cai X, Xu Z, Li X, Wang D, Ren X, Kong Q (2023) Underlying mechanism of menthol on controlling postharvest citrus sour rot caused by Geotrichum Citri-Aurantii. Postharvest Biol Technol 196:112160. https://doi.org/10.1016/j.postharvbio.2022.112160
Chockchaisawasdee S, Golding JB, Vuong QV, Papoutsis K, Stathopoulos CE (2016) Sweet cherry: composition, postharvest preservation, processing and trends for its future use. Trends Food Sci Technol 55:72–83. https://doi.org/10.1016/j.tifs.2016.07.002
El Achkar T, Greige-Gerges H, Fourmentin S (2021) Basics and properties of deep eutectic solvents: a review. Environ Chem Lett 19(4):3397–3408. https://doi.org/10.1007/s10311-021-01225-8
Ghidelli C, Pérez-Gago MB (2018) Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Crit Rev Food Sci Nutr 58(4):662–679. https://doi.org/10.1080/10408398.2016.1211087
Article PubMed CAS Google Scholar
Guimarães AC, Meireles LM, Lemos MF, Guimarães MCC, Endringer DC, Fronza M, Scherer R (2019) Antibacterial activity of terpenes and terpenoids Present in essential oils. Molecules 24(13):2471. https://doi.org/10.3390/molecules24132471
Article PubMed PubMed Central CAS Google Scholar
Jurić T, Uka D, Holló BB, Jović B, Kordić B, Popović BM (2021) Comprehensive physicochemical evaluation of choline chloride-based natural deep eutectic solvents. J Mol Liq 343. https://doi.org/10.1016/j.molliq.2021.116968
Kong W, Huo H, Gu Y, Cao Y, Wang J, Liang J, Niu S (2022) Antifungal activity of camphor against four phytopathogens of Fusarium. S Afr J Bot 148:437–445. https://doi.org/10.1016/j.sajb.2022.05.019
Liang C, Gao W, Ge T, Tan X, Wang J, Liu H, Wang Y, Han C, Xu Q, Wang Q (2021) Lauric Acid is a potent Biological Control Agent that damages the cell membrane of Phytophthora sojae. Front Microb 12. https://doi.org/10.3389/fmicb.2021.666761
López P, Sánchez C, Batlle R, Nerín C (2005) Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. J Agric Food Chem 53(17):6939–6946. https://doi.org/10.1021/jf050709v
Article PubMed CAS Google Scholar
Magri A, Curci M, Battaglia V, Fiorentino A, Petriccione M (2023) Essential oils in Postharvest Treatment against Microbial Spoilage of the Rosaceae Family fruits. Appl Chem 3(2):196–216. https://doi.org/10.3390/appliedchem3020013
Marei GIKh, Abdel Rasoul MA, Abdelgaleil SAM (2012) Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pest Biochem Physiol 103(1):56–61. https://doi.org/10.1016/j.pestbp.2012.03.004
Mari M, Bautista-Baños S, Sivakumar D (2016) Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharv Biol Technol 122:70–81. https://doi.org/10.1016/j.postharvbio.2016.04.014
Marquenie D, Geeraerd AH, Lammertyn J, Soontjens C, Van Impe JF, Michiels CW, Nicolaï BM (2003) Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis Cinerea and Monilia fructigena. Int J Food Microbiol 85(1–2):185–196. https://doi.org/10.1016/S0168-1605(02)00538-X
Article PubMed CAS Google Scholar
Mišan A, Nađpal J, Stupar A, Pojić M, Mandić A, Verpoorte R, Choi YH (2020) The perspectives of natural deep eutectic solvents in agri-food sector. Crit Rev Food Sci Nutri 60(15):2564–2592. https://doi.org/10.1080/10408398.2019.1650717
Morca AU, Teksür PK, Eğerci Y (2022) Morphological and molecular identification of Monilinia spp. causing blossom blight and fruit rot on sweet cherries in the Aegean region of Turkey. Phytoparasitica 50(3):527–542. https://doi.org/10.1007/s12600-022-00987-3
National Center for Biotechnology Information (2024) PubChem Compound Summary for CID 1254, Menthol. Retrieved May 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Menthol
Oliveira Filho JGD, da Cruz Silva G, de Aguiar AC, Cipriano L, de Azeredo HMC, Bogusz Junior S, Ferreira MD (2021) Chemical composition and antifungal activity of essential oils and their combinations against Botrytis Cinerea in strawberries. J Food Measur Character 15(2):1815–1825. https://doi.org/10.1007/s11694-020-00765-x
Popovic BM, Micic N, Potkonjak A, Blagojevic B, Pavlovic K, Milanov D, Juric T (2022) Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents – Ultrafast microwave-assisted NADES preparation and extraction. Food Chem 366:130562. https://doi.org/10.1016/j.foodchem.2021.130562
Article PubMed CAS Google Scholar
Radošević K, Čanak I, Panić M, Markov K, Bubalo MC, Frece J, Srček VG, Redovniković IR (2018) Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ Sci Pollution Res 25(14):14188–14196. https://doi.org/10.1007/s11356-018-1669-z
Rente D, Cvjetko Bubalo M, Panić M, Paiva A, Caprin B, Radojčić Redovniković I, Duarte ARC (2022) Review of deep eutectic systems from laboratory to industry, taking the application in the cosmetics industry as an example. J Clean Prod 380:135147. https://doi.org/10.1016/j.jclepro.2022.135147
Romanazzi G, Moumni M (2022) Chitosan and other edible coatings to extend shelf life, manage postharvest decay, and reduce loss and waste of fresh fruits and vegetables. Curr Opin Biotechnol 78:102834. https://doi.org/10.1016/j.copbio.2022.102834
Article PubMed CAS Google Scholar
Shekaari H, Zafarani-Moattar MT, Mohammadi B (2019) Liquid–liquid equilibria for Benzene/Thiophene + Cyclohexane/Hexadecane + deep Eutectic solvents: data and correlation. J Chem Eng Data 64(9):3904–3918. https://doi.org/10.1021/acs.jced.9b00313
Tsao R, Zhou T (2000) Antifungal activity of Monoterpenoids against Postharvest pathogens Botrytis Cinerea and Monilinia fructicola. J Essent Oil Res 12(1):113–121. https://doi.org/10.1080/10412905.2000.9712057
Uka D, Blagojević B, Alioui O, Boublia A, Elboughdiri N, Benguerba Y, Jurić T, Popović BM (2023) An innovative and environmentally friendly approach for resveratrol solubilization and bioaccessibility enhancement by using natural deep eutectic solvents. J Mol Liq 391:123411. https://doi.org/10.1016/j.molliq.2023.123411
Uysal-Morca A, Kinay-Teksür P, Egercï Y (2021) Morphological and phylogenetic identification of Botrytis Cinerea causing blossom blight and fruit rot of sweet cherries in Aegean region, Turkey. J Plant Dis Protect 128(4):1051–1060. https://doi.org/10.1007/s41348-021-00482-7
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ (2022) Fruit Development in Sweet Cherry. Plants 11(12):1531. https://doi.org/10.3390/plants11121531
留言 (0)