Exploring the molecular interactions between nephrolithiasis and carotid atherosclerosis: asporin as a potential biomarker

Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y (2017) Epidemiology of stone disease across the world. World J Urol 35(9):1301–1320. https://doi.org/10.1007/s00345-017-2008-6

Article  PubMed  Google Scholar 

Randall A, THE ORIGIN AND GROWTH OF RENAL CALCULI (1937) Ann Surg 105(6):1009–1027. https://doi.org/10.1097/00000658-193706000-00014

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daudon M, Bazin D, Letavernier E (2015) Randall’s plaque as the origin of calcium oxalate kidney stones. Urolithiasis 43 Suppl 1:5–11. https://doi.org/10.1007/s00240-014-0703-y

Article  CAS  Google Scholar 

Khan SR, Canales BK (2015) Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(0 1):109–123. https://doi.org/10.1007/s00240-014-0705-9

Article  PubMed  CAS  Google Scholar 

Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241. https://doi.org/10.1038/35025203

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hollander M, Bots ML, Del SA, Koudstaal PJ, Witteman JC, Grobbee DE et al (2002) Carotid plaques increase the risk of stroke and subtypes of cerebral infarction in asymptomatic elderly: the Rotterdam study. Circulation 105(24):2872–2877. https://doi.org/10.1161/01.cir.0000018650.58984.75

Article  PubMed  CAS  Google Scholar 

Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M (2007) Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115(4):459–467. https://doi.org/10.1161/CIRCULATIONAHA.106.628875

Article  PubMed  Google Scholar 

Reiner AP, Kahn A, Eisner BH, Pletcher MJ, Sadetsky N, Williams OD et al (2011) Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. J Urol 185(3):920–925. https://doi.org/10.1016/j.juro.2010.10.086

Article  PubMed  Google Scholar 

Hong Y, Jin X, Mo J, Lin HM, Duan Y, Pu M et al (2007) Metabolic syndrome, its preeminent clusters, incident coronary heart disease and all-cause mortality–results of prospective analysis for the atherosclerosis risk in communities study. J Intern Med 262(1):113–122. https://doi.org/10.1111/j.1365-2796.2007.01781.x

Article  PubMed  CAS  Google Scholar 

Alelign T, Petros B (2018) Kidney Stone Disease: an update on current concepts. Adv Urol 2018(3068365). https://doi.org/10.1155/2018/3068365

Ewence AE, Bootman M, Roderick HL, Skepper JN, McCarthy G, Epple M et al (2008) Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res 103(5):e28–34. https://doi.org/10.1161/CIRCRESAHA.108.181305

Article  PubMed  CAS  Google Scholar 

Lu KC, Wu CC, Yen JF, Liu WC (2014) Vascular calcification and renal bone disorders. Scientificworldjournal 2014:637065. https://doi.org/10.1155/2014/637065

Article  PubMed  PubMed Central  CAS  Google Scholar 

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rule AD, Roger VL, Melton LR, Bergstralh EJ, Li X, Peyser PA et al (2010) Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol 21(10):1641–1644. https://doi.org/10.1681/ASN.2010030253

Article  PubMed  PubMed Central  Google Scholar 

Obligado SH, Goldfarb DS (2008) The association of nephrolithiasis with hypertension and obesity: a review. Am J Hypertens 21(3):257–264. https://doi.org/10.1038/ajh.2007.62

Article  PubMed  CAS  Google Scholar 

Taylor EN, Stampfer MJ, Curhan GC (2005) Diabetes mellitus and the risk of nephrolithiasis. Kidney Int 68(3):1230–1235. https://doi.org/10.1111/j.1523-1755.2005.00516.x

Article  PubMed  Google Scholar 

Devarajan A (2018) Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between kidney stone formation and cardiovascular diseases. Clin Sci 132(6):615–626. https://doi.org/10.1042/CS20171574

Article  CAS  Google Scholar 

Sun J, Zhang T, Zhang P, Lv L, Wang Y, Zhang J et al (2014) Overexpression of the PLAP-1 gene inhibits the differentiation of BMSCs into osteoblast-like cells. J Mol Histol 45(5):599–608. https://doi.org/10.1007/s10735-014-9585-0

Article  PubMed  CAS  Google Scholar 

Yamada S, Tomoeda M, Ozawa Y, Yoneda S, Terashima Y, Ikezawa K et al (2007) PLAP-1/asporin, a novel negative regulator of periodontal ligament mineralization. J Biol Chem 282(32):23070–23080. https://doi.org/10.1074/jbc.M611181200

Article  PubMed  CAS  Google Scholar 

Ege B, Erdogmus Z, Bozgeyik E, Koparal M, Kurt MY, Gulsun B (2021) Asporin levels in patients with temporomandibular joint disorders. J Oral Rehabil 48(10):1109–1117. https://doi.org/10.1111/joor.13234

Article  PubMed  CAS  Google Scholar 

Mishra A, Awasthi S, Raj S, Mishra P, Srivastava RN (2019) Identifying the role of ASPN and COMP genes in knee osteoarthritis development. J Orthop Surg Res 14(1):337. https://doi.org/10.1186/s13018-019-1391-7

Article  PubMed  PubMed Central  Google Scholar 

Castellana B, Escuin D, Peiro G, Garcia-Valdecasas B, Vazquez T, Pons C et al (2012) ASPN and GJB2 are implicated in the mechanisms of Invasion of Ductal breast carcinomas. J Cancer 3:175–183. https://doi.org/10.7150/jca.4120

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rochette A, Boufaied N, Scarlata E, Hamel L, Brimo F, Whitaker HC et al (2017) Asporin is a stromally expressed marker associated with prostate cancer progression. Brit J Cancer 116(6):775–784. https://doi.org/10.1038/bjc.2017.15

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang L, Sun J (2022) ASPN is a potential Biomarker and Associated with Immune Infiltration in Endometriosis. Genes-Basel 13(8). https://doi.org/10.3390/genes13081352

Gambaro G, D’Angelo A, Fabris A, Tosetto E, Anglani F, Lupo A (2004) Crystals, Randall’s plaques and renal stones: do bone and atherosclerosis teach us something? J Nephrol 17(6):774–777

PubMed  Google Scholar 

de Water R, Noordermeer C, van der Kwast TH, Nizze H, Boeve ER, Kok DJ et al (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33(4):761–771. https://doi.org/10.1016/s0272-6386(99)70231-3

Article  PubMed  Google Scholar 

Ley K (2021) Inflammation and atherosclerosis. Cells-Basel 10(5). https://doi.org/10.3390/cells10051197

Taguchi K, Okada A, Hamamoto S, Unno R, Moritoki Y, Ando R et al (2016) M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep-Uk 6:35167. https://doi.org/10.1038/srep35167

Article  CAS  Google Scholar 

Dominguez-Gutierrez PR, Kusmartsev S, Canales BK, Khan SR (2018) Calcium oxalate differentiates human monocytes into inflammatory M1 macrophages. Front Immunol 9:1863. https://doi.org/10.3389/fimmu.2018.01863

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kyaw T, Tay C, Krishnamurthi S, Kanellakis P, Agrotis A, Tipping P et al (2011) B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ Res 109(8):830–840. https://doi.org/10.1161/CIRCRESAHA.111.248542

Article  PubMed  CAS  Google Scholar 

Kyaw T, Cui P, Tay C, Kanellakis P, Hosseini H, Liu E et al (2013) BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE(-/-) mice. PLoS ONE 8(4):e60430. https://doi.org/10.1371/journal.pone.0060430

Articl

留言 (0)

沒有登入
gif