Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E: A deep look into radiomics. Radiol Med. 126:1296-1311, 2021 https://doi.org/10.1007/s11547-021-01389-x
Article PubMed PubMed Central Google Scholar
Rogers W, Thulasi Seetha S, Refaee TAG, Lieverse RIY, Granzier RWY, Ibrahim A, et al: Radiomics: from qualitative to quantitative imaging. Br J Radiol. 93:20190948, 2020 https://doi.org/10.1259/bjr.20190948
Article PubMed PubMed Central Google Scholar
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B: Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging. 11:91, 2020 https://doi.org/10.1186/s13244-020-00887-2
Article PubMed PubMed Central Google Scholar
Gaêta-Araujo H, Alzoubi T, Vasconcelos KF, Orhan K, Pauwels R, Casselman JW, et al: Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofac Radiol. 49:20200145, 2020 https://doi.org/10.1259/dmfr.20200145
Article PubMed PubMed Central Google Scholar
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffman TC, et al: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372:71, 2021 https://doi.org/10.1136/bmj.n71
Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al: QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 155:529-36, 2011 https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö: Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol. 25:485-495, 2019 https://doi.org/10.5152/dir.2019.19321
Article PubMed PubMed Central Google Scholar
Kawashima Y, Fujita A, Buch K, Li B, Qureshi MM, Chapman MN, et al: Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. Eur J Radiol. 116:212-218, 2019 https://doi.org/10.1016/j.ejrad.2019.05.009
Oda M, Staziaki PV, Qureshi MM, Andreu-Arasa VC, Li B, Takumi K, et al: Using CT texture analysis to differentiate cystic and cystic-appearing odontogenic lesions. Eur J Radiol. 120:108654, 2019 https://doi.org/10.1016/j.ejrad.2019.108654
Abdolali F, Zoroofi RA, Otake Y, Sato Y: Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics. Comput Methods Programs Biomed. 139:197-207, 2017 https://doi.org/10.1016/j.cmpb.2016.10.024
Alzubaidi MA, Otoom M. A comprehensive study on feature types for osteoporosis classification in dental panoramic radiographs. Comput Methods Programs Biomed. 188:105301, 2020 https://doi.org/10.1016/j.cmpb.2019.105301
Bianchi J, Gonçalves JR, Ruellas ACO, Vimort JB, Yatabe M, Paniagua B, et al: Software comparison to analyze bone radiomics from high resolution CBCT scans of mandibular condyles. Dentomaxillofac Radiol. 48:20190049, 2019 https://doi.org/10.1259/dmfr.20190049
Article PubMed PubMed Central Google Scholar
Bianchi J, de Oliveira Ruellas AC, Gonçalves JR, Paniagua B, Prieto JC, Styner M, et al: Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning. Sci Rep. 15;10:8012, 2020 https://doi.org/10.1038/s41598-020-64942-0
Bianchi J, Gonçalves JR, de Oliveira Ruellas AC, Ashman LM, Vimort JB, Yatabe M, et al: Quantitative bone imaging biomarkers to diagnose temporomandibular joint osteoarthritis. Int J Oral Maxillofac Surg. 50:227-235, 2021 https://doi.org/10.1016/j.ijom.2020.04.018
Article CAS PubMed Google Scholar
Bracanovic D, Janovic A, Antic S, Rajkovic K, Bracanovic M, Tomic Spiric V, et al: ‘CT and CT image-based texture image analysis in radiological diagnostics of allergic fungal rhinosinusitis’. Mycoses. 65:551-559, 2022 https://doi.org/10.1111/myc.13438
Article CAS PubMed Google Scholar
Canger EM, Coşgunarslan A, Dilek F, Talay Çalış H: Evaluation of temporomandibular joint components and mandibular bone structure in ankylosing spondylitis patients. Oral Surg Oral Med Oral Pathol Oral Radiol. 135:136-146, 2023 https://doi.org/10.1016/j.oooo.2022.08.009
Carvalho BF, de Castro JGK, de Melo NS, de Souza Figueiredo PT, Moreira-Mesquita CR, de Paula AP, et al: Fractal dimension analysis on CBCT scans for detecting low bone mineral density in postmenopausal women. Imaging Sci Dent. 52:53-60, 2022 https://doi.org/10.5624/isd.20210172
Article PubMed PubMed Central Google Scholar
Chen F, Ge Y, Li S, Liu M, Wu J, Liu Y: Enhanced CT-based texture analysis and radiomics score for differentiation of pleomorphic adenoma, basal cell adenoma, and Warthin tumor of the parotid gland. Dentomaxillofac Radiol. 52:20220009, 2023 https://doi.org/10.1259/dmfr.20220009
Article PubMed PubMed Central Google Scholar
Chondro P, Hu HC, Hung HY, Chang SY, Li LP, Ruan SJ: An Effective Occipitomental View Enhancement Based on Adaptive Morphological Texture Analysis. IEEE J Biomed Health Inform. 21:1105-1113, 2017 https://doi.org/10.1109/JBHI.2016.2593455
Cordeiro MS, Backes AR, Júnior AF, Gonçalves EH, de Oliveira JX: Fibrous Dysplasia Characterization Using Lacunarity Analysis. J Digit Imaging. 29:134-40, 2016 https://doi.org/10.1007/s10278-015-9815-3
Coşgunarslan A, Soydan Çabuk D, Canger EM: Effect of total edentulism on the internal bone structure of mandibular condyle: a preliminary study. Oral Radiol. 37:268-275, 2021 https://doi.org/10.1007/s11282-020-00444-z
de Oliveira CdNA, Barra SG, Abreu LG, Machado VC, Pinheiro JdJV, Henriques JAS, et al: Fractal analysis of fibrous dysplasia and ossifying fibroma in 2D and 3D CBCT images. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology. 34:791-9, 2022 https://doi.org/10.1016/j.ajoms.2022.03.001
De Rosa CS, Bergamini ML, Palmieri M, Sarmento DJS, de Carvalho MO, Ricardo ALF, et al: Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis. Heliyon. 6:e05194, 2020 https://doi.org/10.1016/j.heliyon.2020.e05194
Article PubMed PubMed Central Google Scholar
Fardim K, Ribeiro T, Araújo E, Ogawa C, Costa A, Lopes S: Magnetic resonance imaging texture analysis of the temporomandibular joint for changes in the articular disc in individuals with migraine headache. Brazilian Dental Science. 26:e3649, 2023 https://doi.org/10.4322/bds.2023.e3649
Geetha V, Aprameya KS, Hinduja DM: Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Inf Sci Syst. 8:8, 2020 https://doi.org/10.1007/s13755-019-0096-y
Article CAS PubMed PubMed Central Google Scholar
Ghosh A, Lakshmanan M, Manchanda S, Bhalla AS, Kumar P, Bhutia O, et al: Contrast-enhanced multidetector computed tomography features and histogram analysis can differentiate ameloblastomas from central giant cell granulomas. World J Radiol. 14:329-341, 2022 https://doi.org/10.4329/wjr.v14.i9.329
Article PubMed PubMed Central Google Scholar
Gomes JPP, Ogawa CM, Silveira RV, Castellano G, De Rosa CS, Yasuda CL, et al: Magnetic resonance imaging texture analysis to differentiate ameloblastoma from odontogenic keratocyst. Sci Rep. 12:20047, 2022 https://doi.org/10.1038/s41598-022-20802-7
Article CAS PubMed PubMed Central Google Scholar
Gonçalves BC, de Araújo EC, Nussi AD, Bechara N, Sarmento D, Oliveira MS, et al: Texture analysis of cone-beam computed tomography images assists the detection of furcal lesion. J Periodontol. 91:1159-1166, 2020 https://doi.org/10.1002/JPER.19-0477
Güngör E, Yildirim D, Çevik R: Evaluation of osteoporosis in jaw bones using cone beam CT and dual-energy X-ray absorptiometry. J Oral Sci. 58:185-194, 2016 https://doi.org/10.2334/josnusd.15-0609
留言 (0)