Robust Radiomics Models for Predicting HIFU Prognosis in Uterine Fibroids Using SHAP Explanations: A Multicenter Cohort Study

Marsh EE, Wegienka G, Williams DR. Uterine Fibroids. JAMA. 2024;331(17):1492-1493. https://doi.org/10.1001/jama.2024.0447

Article  PubMed  Google Scholar 

Li F, Chen J, Yin L, et al. HIFU as an alternative modality for patients with uterine fibroids who require fertility-sparing treatment. Int J Hyperthermia. 2023;40(1):2155077. https://doi.org/10.1080/02656736.2022.2155077

Article  CAS  PubMed  Google Scholar 

Lyon PC, Rai V, Price N, Shah A, Wu F, Cranston D. Ultrasound-Guided High Intensity Focused Ultrasound Ablation for Symptomatic Uterine Fibroids: Preliminary Clinical Experience. Ultraschall Med. 2020;41(5):550-556. https://doi.org/10.1055/a-0891-0729

Article  PubMed  Google Scholar 

Verpalen IM, de Boer JP, Linstra M, et al. The Focused Ultrasound Myoma Outcome Study (FUMOS); a retrospective cohort study on long-term outcomes of MR-HIFU therapy. Eur Radiol. 2020;30(5):2473-2482. https://doi.org/10.1007/s00330-019-06641-7

Article  PubMed  Google Scholar 

Laughlin-Tommaso S, Barnard EP, AbdElmagied AM, et al. FIRSTT study: randomized controlled trial of uterine artery embolization vs focused ultrasound surgery. Am J Obstet Gynecol. 2019;220(2):174.e1-174.e13. https://doi.org/10.1016/j.ajog.2018.10.032

Article  PubMed  Google Scholar 

Hectors SJCG, Jacobs I, Moonen CTW, Strijkers GJ, Nicolay K. MRI methods for the evaluation of high intensity focused ultrasound tumor treatment: Current status and future needs. Magn Reson Med. 2016;75(1):302-317. https://doi.org/10.1002/mrm.25758

Article  CAS  PubMed  Google Scholar 

Kim YS, Lee JW, Choi CH, et al. Uterine Fibroids: Correlation of T2 Signal Intensity with Semiquantitative Perfusion MR Parameters in Patients Screened for MR-guided High-Intensity Focused Ultrasound Ablation. Radiology. 2016;278(3):925-935. https://doi.org/10.1148/radiol.2015150608

Article  PubMed  Google Scholar 

Zhang J, Yang C, Gong C, Zhou Y, Li C, Li F. Magnetic resonance imaging parameter-based machine learning for prognosis prediction of high-intensity focused ultrasound ablation of uterine fibroids. Int J Hyperthermia. 2022;39(1):835-846. https://doi.org/10.1080/02656736.2022.2090622

Article  CAS  PubMed  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278(2):563-577. https://doi.org/10.1148/radiol.2015151169

Article  PubMed  Google Scholar 

Zhang YP, Zhang XY, Cheng YT, et al. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Military Med Res. 2023;10(1):22. https://doi.org/10.1186/s40779-023-00458-8

Article  Google Scholar 

Qin S, Jiang Y, Wang F, Tang L, Huang X. Development and validation of a combined model based on dual-sequence MRI radiomics for predicting the efficacy of high-intensity focused ultrasound ablation for hysteromyoma. Int J Hyperthermia. 2023;40(1):2149862. https://doi.org/10.1080/02656736.2022.2149862

Article  CAS  PubMed  Google Scholar 

Zhou Y, Zhang J, Chen J, et al. Prediction using T2 ‐weighted magnetic resonance imaging‐based radiomics of residual uterine myoma regrowth after high‐intensity focused ultrasound ablation. Ultrasound in Obstet & Gyne. 2022;60(5):681-692. https://doi.org/10.1002/uog.26053

Article  CAS  Google Scholar 

Wei C, Li N, Shi B, et al. The predictive value of conventional MRI combined with radiomics in the immediate ablation rate of HIFU treatment for uterine fibroids. International Journal of Hyperthermia. 2022;39(1):475-484. https://doi.org/10.1080/02656736.2022.2046182

Article  CAS  PubMed  Google Scholar 

Zheng Y, Chen L, Liu M, Wu J, Yu R, Lv F. Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model. Front Oncol. 2021;11:618604. https://doi.org/10.3389/fonc.2021.618604

Article  PubMed  PubMed Central  Google Scholar 

Zheng Y, Chen L, Liu M, Wu J, Yu R, Lv F. Nonenhanced MRI-based radiomics model for preoperative prediction of nonperfused volume ratio for high-intensity focused ultrasound ablation of uterine leiomyomas. Int J Hyperthermia. 2021;38(1):1349-1358. https://doi.org/10.1080/02656736.2021.1972170

Article  CAS  PubMed  Google Scholar 

Qin S, Jiang Y, Wang F, Tang L, Huang X. Development and validation of a combined model based on dual-sequence MRI radiomics for predicting the efficacy of high-intensity focused ultrasound ablation for hysteromyoma. International Journal of Hyperthermia. 2023;40(1):2149862. https://doi.org/10.1080/02656736.2022.2149862

Article  CAS  PubMed  Google Scholar 

Akpinar E, Bayrak OC, Nadarajan C, Müslümanoğlu MH, Nguyen MD, Keserci B. Role of machine learning algorithms in predicting the treatment outcome of uterine fibroids using high-intensity focused ultrasound ablation with an immediate nonperfused volume ratio of at least 90. Eur Rev Med Pharmacol Sci. 2022;26(22):8376-8394. https://doi.org/10.26355/eurrev_202211_30373

Article  CAS  PubMed  Google Scholar 

Li C, He Z, Lv F, et al. An interpretable MRI-based radiomics model predicting the prognosis of high-intensity focused ultrasound ablation of uterine fibroids. Insights Imaging. 2023;14(1):129. https://doi.org/10.1186/s13244-023-01445-2

Article  PubMed  PubMed Central  Google Scholar 

Keserci B, Duc NM. Magnetic resonance imaging features influencing high-intensity focused ultrasound ablation of adenomyosis with a nonperfused volume ratio of ≥90% as a measure of clinical treatment success: retrospective multivariate analysis. Int J Hyperthermia. 2018;35(1):626-636. https://doi.org/10.1080/02656736.2018.1516301

Article  CAS  PubMed  Google Scholar 

Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2):328-338. https://doi.org/10.1148/radiol.2020191145

Article  PubMed  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017;77(21):e104-e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intelligent Systems and their Applications. 1998;13(4):18-28. https://doi.org/10.1109/5254.708428

Article  Google Scholar 

Ke G, Meng Q, Finley T, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: Advances in Neural Information Processing Systems. Vol 30. Curran Associates, Inc.; 2017. Accessed June 26, 2024. https://proceedings.neurips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. Association for Computing Machinery; 2016:785–794. https://doi.org/10.1145/2939672.2939785

Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. In: Advances in Neural Information Processing Systems. Vol 30. Curran Associates, Inc.; 2017. Accessed June 26, 2024. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

Gong C, Lin Z, Lv F, Zhang L, Wang Z. Magnetic resonance imaging parameters in predicting the ablative efficiency of high-intensity focused ultrasound for uterine fibroids. International Journal of Hyperthermia. 2021;38(1):523-531. https://doi.org/10.1080/02656736.2021.1904152

Article  CAS  PubMed  Google Scholar 

Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak. 2019;19:281. https://doi.org/10.1186/s12911-019-1004-8

Article  PubMed  PubMed Central  Google Scholar 

Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006. https://doi.org/10.1038/ncomms5006

Article  CAS  PubMed  Google Scholar 

Nohara Y, Matsumoto K, Soejima H, Nakashima N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput Methods Programs Biomed. 2022;214:106584. https://doi.org/10.1016/j.cmpb.2021.106584

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif