Photo-physical characterizations and evaluation of in-vitro antioxidant, anti-inflammatory and antidiabetic potentials of green synthesized ackee (Blighia sapida) selenium nano-particles

Thiruvengadam M, Rajakumar G, Chung IM. Nanotechnology: current uses and future applications in the food industry. PMC. 2018;8(1):74.

Google Scholar 

Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M. A review on nanotechnology: properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq. 2022;348: 118008.

Article  CAS  Google Scholar 

Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 2007;150(5):552–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman H. Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ. 2020;721: 137778.

Article  CAS  PubMed  Google Scholar 

Fernandes LCC, Nogueira KAB, Martins JRP, Santos E, de Freitas PGC, Nogueira BAB. Nanotechnology: concepts and potential applications in medicine. Mater Horizons From Nat to Nanomater. 2021;1:1–39.

Google Scholar 

Manikandan S, Subbaiya R, Saravanan M, Ponraj M, Selvam M, Pugazhendhi A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere. 2022;289: 132867.

Article  CAS  PubMed  Google Scholar 

Jagtiani E. Advancements in nanotechnology for food science and industry. Food Front. 2022;3(1):56–82. https://doi.org/10.1002/fft2.104.

Article  Google Scholar 

Kazemi S, Hosseingholian A, Gohari SD, Feirahi F, Moammeri F, Mesbahian G. Recent advances in green synthesized nanoparticles: from production to application. Mater Today Sustain. 2023;24: 100500.

Google Scholar 

Kandav G, Sharma T. Green synthesis: an eco friendly approach for metallic nanoparticles synthesis. Part Sci Technol. 2023;1:20. https://doi.org/10.1080/02726351.2023.2281452.

Article  CAS  Google Scholar 

Palit S, Hussain CM. Green sustainability and the application of polymer nanocomposites—a vast vision for the future. Handb Polym Nanocomposites Ind Appl. 2021;1:733–47.

Google Scholar 

Palit S, Hussain CM. Recent advances in green nanotechnology and the vision for the future. Green Met Nanoparticles. 2018;1:1–21.

CAS  Google Scholar 

Koçak Y, Aygun A, Altuner EE, Ozdemir S, Gonca S, Berikten DERYA, Sen F. Eco-friendly production of platinum nanoparticles: physicochemical properties, evaluation of biological and catalytic activities. Int J Environ Sci Technol. 2024;21(1):51–62.

Article  Google Scholar 

Kocak Y, Meydan I, Gur Karahan T, Sen F. Investigation of mycosynthesized silver nanoparticles by the mushroom Pleurotus eryngii in biomedical applications. Int J Environ Sci Technol. 2023;20(5):4861–72.

Article  CAS  Google Scholar 

Kocak Y, Tiri RNE, Aygun A, Meydan I, Bennini N, Karahan T, Sen F. Microwave-assisted fabrication of AgRuNi trimetallic NPs with their antibacterial vs photocatalytic efficiency for remediation of persistent organic pollutants. BioNanoScience. 2024;14(1):93–101.

Article  Google Scholar 

Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A. An overview of essential microelements and common metallic nanoparticles and their effects on male fertility. Int J Environ Res Public Health. 2022;1:19 (17).

Google Scholar 

Bisht N, Phalswal P, Khanna PK. Selenium nanoparticles: a review on synthesis and biomedical applications. Mater Adv. 2022;3:1415.

Article  CAS  Google Scholar 

Muzembo BA, Ngatu NR, Januka K, Huang HL, Nattadech C, Suzuki T. Selenium supplementation in HIV-infected individuals: a systematic review of randomized controlled trials. Clin Nutr ESPEN. 2019;1(34):1–7.

Article  Google Scholar 

Chen JT. Plant and nanoparticles. Plant and Nanoparticles. 2022;1:1–426.

Google Scholar 

Kumari A, Rana V, Yadav SK, Kumar V. Nanotechnology as a powerful tool in plant sciences: recent developments, challenges and perspectives. Plant Nano Biol. 2023;5: 100046.

Article  Google Scholar 

James PB, Wardle J, Steel A, Adams J. Traditional, complementary and alternative medicine use in sub-Saharan Africa: a systematic review. BMJ Glob Heal. 2018;3(5):895.

Google Scholar 

Abdullahi AA. Trends and challenges of traditional medicine in Africa. African J Tradit Complement Altern Med. 2011;8(5 Suppl):115.

Google Scholar 

Wray D, Goldson-Barnaby A, Bailey D. Ackee (Blighia Sapida KD Koenig) - a review of its economic importance, bioactive components, associated health benefits and commercial applications. Int J Fruit Sci. 2020;20(S2):S910–24. https://doi.org/10.1080/15538362.2020.1772941.

Article  Google Scholar 

Adekola MB, Areola JO, Fagbohun OF, Asaolu FT, Ogundepo GE, Fajobi AO. In-vitro antioxidant and anti-inflammatory activities of ethanol stem-bark extract of Blighia sapida. J Pharm Anal. 2022;12(2):350 PMC9091874/.

Article  PubMed  Google Scholar 

Ibraheem O, Oyewole TA, Adedara A, Abolaji AO, Ogundipe OM, Akinyelu J. Ackee (Blighia sapida K.D. Koenig) leaves and arils methanolic extracts ameliorate CdCl 2-induced oxidative stress biomarkers in Drosophila melanogaster. Hindawi Oxidative Med Cell Longev. 2022;1:20. https://doi.org/10.1155/2022/3235031.

Article  CAS  Google Scholar 

Oloyede OB, Ajiboye TO, Abdussalam AF, Adeleye AO. Blighia sapida leaves halt elevated blood glucose, dyslipidemia and oxidative stress in alloxan-induced diabetic rats. J Ethnopharmacol. 2014;157:309–19.

Article  CAS  PubMed  Google Scholar 

Akintola AO, Kehinde BD, Ayoola PB, Adewoyin AG, Adedosu OT, Ajayi JF. Antioxidant properties of silver nanoparticles biosynthesized from methanolic leaf extract of Blighia sapida. IOP Conf Ser Mater Sci Eng. 2020;805(1): 012004. https://doi.org/10.1088/1757-899X/805/1/012004.

Article  CAS  Google Scholar 

Ibraheem O, Bankole D, Adedara A, Abolaji AO, Fatoki TH, Ajayi JM. Methanolic leaves and arils extracts of ackee (Blighia sapida) plant ameliorate mercuric chloride-induced oxidative stress in Drosophila melanogaster. Biointerface Res in Applied Chem. 2021;11(1):7528–42. https://doi.org/10.33263/BRIAC111.75287542.

Article  CAS  Google Scholar 

Zhai X, Zhang C, Zhao G, Stoll S, Ren F. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. Journal of Nanobiotechnology. 2017;15(4):5.

Google Scholar 

Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111(802–812):6.

Google Scholar 

Karthik KK, Cheriyan BV, Rajeshkumar S, Gopalakrishnan M. A review on selenium nanoparticles and their biomedical applications. Biomedical Tech. 2024;6:61–74.

Article  CAS  Google Scholar 

Mikhailova EO. Selenium nanoparticles: green synthesis and biomedical application. Molecules. 2023;28(24):8125. https://doi.org/10.3390/molecules28248125. PMID:38138613;PMCID:PMC10745377.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajeshkumar S, Veena P, Santhiyaa RV. Synthesis and characterization of selenium nanoparticles using natural resources and its applications. Nanotechnol Life Sci. 2018;1:63–79. https://doi.org/10.1007/978-3-319-99570-0_4.

Article  Google Scholar 

Urbankova L, Horky P, Skladanka J, Pribilova M, Smolikova V, Nevrkla P. Antioxidant status of rats’ blood and liver affected by sodium selenite and selenium nanoparticles. PeerJ. 2018;2018(5):1.

Google Scholar 

Singh S, Garg K, Sharma N, Sharma S, Arora S. Development and validation of uv-spectroscopy analytical method for estimation of lafutidine in solid nano-dispersion. 2020;20(2):2291–7.

Google Scholar 

Kumari K, Ramakrishnan V. Fourier transform infrared (FTIR) spectroscopy. Protocol. 2023;1:51–4. https://doi.org/10.1007/978-1-0716-3405-9_7.

Article  Google Scholar 

Akhtar K, Khan SA, Khan SB, Asiri AM. Scanning electron microscopy: principle and applications in nanomaterials characterization. Handb Mater Charact. 2018;1:113–45. https://doi.org/10.1007/978-3-319-92955-2_4.

Article  Google Scholar 

Bernardi J. Energy-dispersive X-ray spectroscopy. Imaging Modalities Biol Preclin Res A Compend. 2021;1(1). Ex vivo Biol imaging https://iopscience.iop.org/book/978-0-7503-3059-6/chapter/bk978-0-7503-3059-6ch41

Magdalena Pisoschi A. Methods for Total Antioxidant Activity Determination: A Review. 2011;63. https://doi.org/10.4172/2161-1009.1000106.

Bektaşoǧlu B, Esin Çelik S, Özyürek M, Güçlü K, Apak R. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochem Biophys Res Commun. 2006;345(3):1194–200.

Article  PubMed  Google Scholar 

Jie Z, Liu J, Shu M, Ying Y, Yang H. Detection strategies for superoxide anion: a review. Talanta. 2022;236: 122892.

Article  CAS  PubMed  Google Scholar 

Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH. Advances in the analytical methods for determining the antioxidant properties of honey: a review. African J Tradit Complement Altern Med. 2012;9(1):36 Available from: /pmc/articles/PMC3746522/.

CAS  Google Scholar 

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55–63.

留言 (0)

沒有登入
gif