Impact of population size on population genetic analysis of Short Tandem Repeat (STR) allelic data, forensic and paternity parameters and its effect on forensic DNA analysis

Fan H, Chu JY. A brief review of short Tandem repeat mutation. Genomics Proteom Binformatics. 2007;5:7–14. https://doi.org/10.1016/S1672-0229(07)60009-6.

Article  CAS  Google Scholar 

Willems T, Gymrek M, Highnam G, Mittelman D, Erlich Y, The 1000 Genomes Project Consortium. The landscape of human STR variation. Genome Res. 2014;24:1894–904. https://doi.org/10.1101/gr.177774.114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hares DR. Selection and implementation of expanded CODIS core loci in the United States. Forensic Sci Int Genet. 2015;17:33–4. https://doi.org/10.1016/j.fsigen.2015.03.006.

Article  CAS  PubMed  Google Scholar 

Dash HR, Das S. Microbial degradation of forensic samples of biological origin: potential threat to human DNA typing. Mol Biotechnol. 2018;60:141–53. https://doi.org/10.1007/s12033-017-0052-5.

Article  CAS  PubMed  Google Scholar 

Rasool N, Hussain W. ForeStatistics: a windows-based feature-rich software program for performing statistics in forensic DNA analysis, paternity and relationship testing. Forensic Sci Int. 2020;307:110142. https://doi.org/10.1016/j.forsciint.2020.110142.

Article  CAS  PubMed  Google Scholar 

Buckleton J, Curran J, Goudet J, Taylor D, Thiery A, Weir BS. Population-specific FST values for forensic STR markers: a worldwide survey. Forensic Sci Int Genet. 2016;23:91–100. https://doi.org/10.1016/j.fsigen.2016.03.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dash HR, Vajpayee K, Agarwal R, Gang A, Shukla R, Srivastava A. Evaluation of diallelic STR markers with inter-population allelic database for their usefulness in paternity trios in the central Indian population. Ann Hum Biol. 2021a;48:605–13. https://doi.org/10.1080/03014460.2021.2014567.

Article  PubMed  Google Scholar 

Abramovs N, Brass A, Tassabehji M. Hardy-Weinberg equilibrium in the large scale genomic sequencing era. Front Genet. 2020;11(2020). https://doi.org/10.3389/fgene.2020.00210.

Gusmão L, Butler JM, Linacre A, Parson W, Roewer L, Schneider PM, et al. Revised guidelines for the publication of genetic population data. Forensic Sci Int Genet. 2017;30:160–3. https://doi.org/10.1016/j.fsigen.2017.06.007.

Article  CAS  PubMed  Google Scholar 

Bodner M, Bastisch I, Butler JM, Fimmers R, Gill P, Gusmão L, Morling N, Phillips C, Prinz M, Schneider PM, Parson W. Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on quality control of autosomal short Tandem repeat allele frequency databasing (STRidER). Forensic Sci Int Genet. 2016;24:97–102. https://doi.org/10.1016/j.fsigen.2016.06.008.

Article  CAS  PubMed  Google Scholar 

Carracedo A, Butler JM, Gusmão L, Linacre A, Parson W, Roewer L, Schneider PM. New guidelines for the publication of genetic population data. Forensic Sci Int Genet. 2013;7:217–20. https://doi.org/10.1016/j.fsigen.2013.01.001.

Article  PubMed  Google Scholar 

Restrepo T, Martinez M, Palacio O, Posada Y, Zapata S, Gusmao L, Ibarra A. Database sample size effect on minimum allele frequency estimation: database comparison analysis of samples of 4652 and 560 individuals for 22 microsatellites in Colombian population. Forensic Sci Int Genet Supplemental Ser. 2011;3:e13–4.

Article  Google Scholar 

Park HC, Ahn ER, Shin SC. Comparative analysis of allele variation using allele frequencies according to sample size in Korean population. Genes Genomics. 2021;43:1301–5. https://doi.org/10.1007/s13258-021-01159-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixit S, Shrivastava P, Dash HR, Kaitholia K, Sahajpal V, Sahoo S, Srivastava V, Rani HS, Mishra A, Choudhary SK, Thekkatavan A, Chaubey G, Kumawat RK. Assessment of significance and forensic relevance of SE33 (ACTBP2) locus in five Indian populations. Gene Rep. 2021;24:101293. https://doi.org/10.1016/j.genrep.2021.101293.

Article  CAS  Google Scholar 

Al-Snan NR, Messaoudi S, Babu SR, Bakhiet M. Population genetic data of the 21 autosomal STRs included in GlobalFiler kit of a population sample from the Kingdom of Bahrain. PLoS ONE. 2019;14:e0220620. https://doi.org/10.1371/journal.pone.0220620.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;1:47–50.

Article  CAS  Google Scholar 

Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28(19):2537–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang YD, Tang XL, Meng HT, Wang HD, Yang JR, Yan CH, Yang JW. G. Genetic variability and phylogenetic analysis of Han population from Guanzhong region of China based on 21 non-CODIS STR loci. Sci Rep. 2015;5:8872.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dash HR, Shrivastava P, Das S. Principles and practices of DNA analysis: a laboratory manual for forensic DNA typing. Humana New York NY. 2020. ISBN 978-1-0716-0273-7.

Hale ML, Burg TM, Steeves TE. (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoSONE7(9):e45170. https://doi.org/10.1371/journal.pone.0045170.

Cotter DJ, Hofgard EF, Novembre J, Szpiech ZA, Rosenberg NA. A rarefaction approach for measuring population differences in rare and common variation. Genetics. 2023;224:iyad070. https://doi.org/10.1093/genetics/iyad070.

Article  PubMed  PubMed Central  Google Scholar 

Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, Daly MJ, Neale BM, Sunyaev SR, Lander ES. Searching for missing heritability: Designing rare variant association studies. PNAS. 2014;111:E455–64. https://doi.org/10.1073/pnas.132256311.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borsuk LA, Gettings KB, Steffen CR, Kiesler KM, Vallone PM. Sequence-based U.S. population data for the SE33 locus. Electrophoresis. 2018;39:2694–701. https://doi.org/10.1002/elps.201800091.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arora M, Dash HR. (2023) Geolocation prediction from STR genotyping: a pilot study in five geographically distinct global populations. 50: 274–81. https://doi.org/10.1080/03014460.2023.2217382.

Dash HR, Vajpayee K, Srivastava A, Das S. Prevalence and characterisation of size and sequence-based microvariant alleles at nine autosomal STR markers in the central Indian population. Ann Hum Biol. 2021b;48:614–20. https://doi.org/10.1080/03014460.2021.2010804.

Article  PubMed  Google Scholar 

Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95:5–23. https://doi.org/10.1016/j.ajhg.2014.06.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dash HR, Rawat N, Vajpayee K, Shrivastava P, Das S. Useful autosomal STR marker sets for forensic and paternity applications in the central Indian population. Ann Hum Biol. 2021;48:37–48. https://doi.org/10.1080/03014460.2021.1877353.

Article  CAS  PubMed  Google Scholar 

Ayres KL, Overall ADJ. Allowing for within-subpopulation inbreeding in forensic match probabilities. Forensic Sci Int. 1999;103:207–16.

Article  Google Scholar 

Elston RC. Polymorphism information content. Encyclopedia of biostatistics. USA: John Wiley & Sons, Ltd.; 2005.

Google Scholar 

Butler JM. (2014) Advanced Topic in Forensic DNA typing: interpretation, 1st Edn. Academic Press, Cambridge, pp 239–279.

Hill CR, Duewer DL, Kline MC, Coble MD, Butler JM. (2013) U.S. population data for 29 autosomal STR loci. Forensic Sci Int Genet 7: e82–e83. https://doi.org/10.1016/j.fsigen.2012.12.004.

Chakraborty R. Sample size requirements for addressing the population genetic issues of forensic use of DNA typing. Hum Biol. 1992;64:141–59.

CAS  PubMed  Google Scholar 

Shringarpure S, Xing EP. (2014) Effects of sample selection bias on the accuracy of population structure and ancestry inference. G3 (bethesda) 4:901–11. https://doi.org/10.1534/g3.113.007633.

留言 (0)

沒有登入
gif