Steps to understanding diabetes kidney disease: a focus on metabolomics

1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017;12:2032–2045.
pmid pmc
2. Jin DC. Analysis of mortality risk from Korean hemodialysis registry data 2017. Kidney Res Clin Pract 2019;38:169–175.
crossref pmid pmc
3. Kim HJ, Kim SS, Song SH. Glomerular filtration rate as a kidney outcome of diabetic kidney disease: a focus on new antidiabetic drugs. Korean J Intern Med 2022;37:502–519.
crossref pmid pmc pdf
4. Kim DW, Song SH. Sarcopenia in chronic kidney disease: from bench to bedside. Korean J Intern Med 2023;38:303–321.
crossref pmid pmc pdf
5. Johansen KL, Chertow GM, Foley RN, et al. US Renal Data System 2020 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis 2021;77(4 Suppl 1):A7–A8.
pmid pmc
6. Tong LL, Adler SG. Diabetic kidney disease treatment: new perspectives. Kidney Res Clin Pract 2022;41(Suppl 2):S63–S73.
crossref pmid pmc pdf
7. Maruno S, Tanaka T, Nangaku M. Exploring molecular targets in diabetic kidney disease. Kidney Res Clin Pract 2022;41(Suppl 2):S33–S45.
crossref pmid pmc pdf
8. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013;158:825–830.
crossref pmid
9. Fiorentino M, Bolignano D, Tesar V, et al. Renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol Dial Transplant 2017;32:97–110.
crossref pmid
10. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005;28:164–176.
crossref pmid pdf
11. Jawa A, Kcomt J, Fonseca VA. Diabetic nephropathy and retinopathy. Med Clin North Am 2004;88:1001–36xi.
crossref pmid
12. Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 2018;71:884–895.
crossref
13. Jiang G, Luk AOY, Tam CHT, et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney Int 2019;95:178–187.
pmid
14. Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab 2017;25:43–56.
crossref pmid pmc
15. Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell 2018;173:822–837.
crossref
16. Dumas ME. Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes. Mol Biosyst 2012;8:2494–2502.
crossref pmid
17. Breit M, Weinberger KM. Metabolic biomarkers for chronic kidney disease. Arch Biochem Biophys 2016;589:62–80.
crossref pmid
18. Dubin RF, Rhee EP. Proteomics and metabolomics in kidney disease, including insights into etiology, treatment, and prevention. Clin J Am Soc Nephrol 2020;15:404–411.
crossref pmid pmc
19. Davies R. The metabolomic quest for a biomarker in chronic kidney disease. Clin Kidney J 2018;11:694–703.
crossref pmid pmc
20. Lim JH, Chung BH, Lee SH, et al. Omics-based biomarkers for diagnosis and prediction of kidney allograft rejection. Korean J Intern Med 2022;37:520–533.
crossref pmid pmc pdf
21. Jin Q, Ma RCW. Metabolomics in diabetes and diabetic complications: insights from epidemiological studies. Cells 2021;10:2832.
crossref pmid pmc
22. Sakashita M, Tanaka T, Inagi R. Metabolic changes and oxidative stress in diabetic kidney disease. Antioxidants (Basel) 2021;10:1143.
crossref pmid pmc
23. Jung CY, Yoo TH. Novel biomarkers for diabetic kidney disease. Kidney Res Clin Pract 2022;41(Suppl 2):S46–S62.
crossref pmid pmc pdf
24. Hirayama A, Nakashima E, Sugimoto M, et al. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem 2012;404:3101–3109.
crossref pmid pdf
25. Xia JF, Liang QL, Hu P, Wang YM, Li P, Luo GA. Correlations of six related purine metabolites and diabetic nephropathy in Chinese type 2 diabetic patients. Clin Biochem 2009;42:215–220.
crossref pmid
26. Jiang Z, Liang Q, Luo G, Hu P, Li P, Wang Y. HPLC-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols: application to studies of diabetic nephropathy. Talanta 2009;77:1279–1284.
crossref pmid
27. Han LD, Xia JF, Liang QL, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta 2011;689:85–91.
crossref pmid
28. Pena MJ, Lambers Heerspink HJ, Hellemons ME, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med 2014;31:1138–1147.
crossref pmid
29. Kim DW, Kim HJ, Seong EY, et al. Virtual diagnosis of diabetic nephropathy using metabolomics in place of kidney biopsy: the DIAMOND study. Diabetes Res Clin Pract 2023;205:110986.
crossref pmid
30. Darshi M, Van Espen B, Sharma K. Metabolomics in diabetic kidney disease: unraveling the biochemistry of a silent killer. Am J Nephrol 2016;44:92–103.
crossref pmid pmc pdf
31. Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 2013;24:1901–1912.
crossref pmid pmc
32. Colombo M, Looker HC, Farran B, et al. Serum kidney injury molecule 1 and β2-microglobulin perform as well as larger biomarker panels for prediction of rapid decline in renal function in type 2 diabetes. Diabetologia 2019;62:156–168.
crossref pmid pmc pdf
33. Kwan B, Fuhrer T, Zhang J, et al. Metabolomic markers of kidney function decline in patients with diabetes: evidence from the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis 2020;76:511–520.
crossref pmid pmc
34. Kwon S, Hyeon JS, Jung Y, et al. Urine myo-inositol as a novel prognostic biomarker for diabetic kidney disease: a targeted metabolomics study using nuclear magnetic resonance. Kidney Res Clin Pract 2023;42:445–459.
crossref pmid pmc pdf
35. Niewczas MA, Sirich TL, Mathew AV, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int 2014;85:1214–1224.
crossref pmid pmc
36. Kramer CK, Leitão CB, Pinto LC, Silveiro SP, Gross JL, Canani LH. Clinical and laboratory profile of patients with type 2 diabetes with low glomerular filtration rate and normoalbuminuria. Diabetes Care 2007;30:1998–2000.
crossref pmid pdf
37. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004;27:195–200.
crossref pmid pdf
38. Hirakawa Y, Yoshioka K, Kojima K, et al. Potential progression biomarkers of diabetic kidney disease determined using comprehensive machine learning analysis of non-targeted metabolomics. Sci Rep 2022;12:16287.
crossref pmid pmc pdf
39. Wang Z, Zhang J, Wang L, et al. Glycine mitigates renal oxidative stress by suppressing Nox4 expression in rats with streptozotocin-induced diabetes. J Pharmacol Sci 2018;137:387–394.
crossref pmid
40. Yuan Y, Huang L, Yu L, et al. Clinical metabolomics characteristics of diabetic kidney disease: a meta-analysis of 1875 cases with diabetic kidney disease and 4503 controls. Diabetes Metab Res Rev 2024;40:e3789.
pmid
41. Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 2021;128:1580–1591.
crossref pmid
42. Jian Q, Wu Y, Zhang F. Metabolomics in diabetic retinopathy: from potential biomarkers to molecular basis of oxidative stress. Cells 2022;11:3005.
crossref pmid pmc
43. Zhu XR, Yang FY, Lu J, et al. Plasma metabolomic profiling of proliferative diabetic retinopathy. Nutr Metab (Lond) 2019;16:37.
crossref pmid pmc pdf
44. Chen L, Cheng CY, Choi H, et al. Plasma metabonomic profiling of diabetic retinopathy. Diabetes 2016;65:1099–1108.
crossref pmid pdf
45. Yun JH, Kim JM, Jeon HJ, Oh T, Choi HJ, Kim BJ. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS One 2020;15:e0241365.
crossref pmid pmc
46. Tomofuji Y, Suzuki K, Kishikawa T, et al. Identification of serum metabolome signatures associated with retinal and renal complications of type 2 diabetes. Commun Med (Lond) 2023;3:5.
crossref pmid pmc pdf
47. KP , Kumar J A, Rai S, et al. Predictive value of serum sialic Acid in type-2 diabetes mellitus and its complication (nephropathy). J Clin Diagn Res 2013;7:2435–2437.
pmid pmc
48. El-Sayed MS, El Badawy A, Abdelmoneim RO, Mansour AE, Khalil ME, Darwish K. Relationship between serum sialic acid concentration and diabetic retinopathy in Egyptian patients with type 2 diabetes mellitus. Benha Med J 2018;35:257–263.
crossref
49. Li MN, Qian SH, Yao ZY, et al. Correlation of serum N-Acetylneuraminic acid with the risk and prognosis of acute coronary syndrome: a prospective cohort study. BMC Cardiovasc Disord 2020;20:404.
crossref pmid pmc pdf
50. Hu X, Chen S, Ye S, Chen W, Zhou Y. New insights into the role of immunity and inflammation in diabetic kidney disease in the omics era. Front Immunol 2024;15:1342837.
crossref pmid pmc
51. Sha Q, Lyu J, Zhao M, et al. Multi-omics analysis of diabetic nephropathy reveals potential new mechanisms and drug targets. Front Genet 2020;11:616435.
crossref pmid pmc
52. Wu IW, Tsai TH, Lo CJ, et al. Discovering a trans-omics biomarker signature that predisposes high risk diabetic patients to diabetic kidney disease. NPJ Digit Med 2022;5:166.
crossref pmid pmc pdf
53. Di Minno A, Gelzo M, Caterino M, Costanzo M, Ruoppolo M, Castaldo G. Challenges in metabolomics-based tests, biomarkers revealed by metabolomic analysis, and the promise of the application of metabolomics in precision medicine. Int J Mol Sci 2022;23:5213.
crossref pmid pmc
54. Beale DJ, Pinu FR, Kouremenos KA, et al. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 2018;14:152.
crossref pmid pdf
55. Tolstikov V, Moser AJ, Sarangarajan R, Narain NR, Kiebish MA. Current status of metabolomic biomarker discovery: impact of study design and demographic characteristics. Metabolites 2020;10:224.
crossref pmid pmc
56. Bartroff J, Song J. Sequential tests of multiple hypotheses controlling false discovery and nondiscovery rates. Seq Anal 2020;39:65–91.
crossref pmid pmc

留言 (0)

沒有登入
gif