Chotritthirong Y, Chulikhit Y, Daodee S, Boonyarat C, Maneenet J, Khamphukdee C, Kwankhao P, Pitiporn S, Monthakantirat O. Possible mechanisms for the prevention of anxiety and depressive-like behavior in a chronic mild stress mouse model by the Thai herbal medicine with Nelumbo nucifera, Centella asiatica, and Piper nigrum. Rev Bras Farmacogn. 2023;33(4):756-67. https://doi.org/10.1007/s43450-023-00401-x
Palma J-A, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology. 2014;83(3):261-71. https://doi.org/10.1212/WNL.0000000000000605
Otte C, Neylan TC, Pipkin SS, Browner WS, Whooley MA. Depressive symptoms and 24-hour urinary norepinephrine excretion levels in patients with coronary disease: findings from the Heart and Soul Study. Am J Psychiatry. 2005;162(11):2139-45. https://doi.org/10.1176/appi.ajp.162.11.2139
van Marwijk HW, van der Kooy KG, Stehouwer CD, Beekman AT, van Hout HP. Depression increases the onset of cardiovascular disease over and above other determinants in older primary care patients, a cohort study. BMC Cardiovasc Disord. 2015;(15):1-7. https://doi.org/10.1186/s12872-015-0036-y
Grippo AJ, Beltz TG, Weiss RM, Johnson AK. The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol Psychiatry. 2006;59(4):309-16. https://doi.org/10.1016/j.biopsych.2005.07.010
Dawood T, Lambert EA, Barton DA, Laude D, Elghozi J-L, Esler MD, Haikerwal D, Kaye DM, Hotchkin EJ, Lambert GW. Specific serotonin reuptake inhibition in major depressive disorder adversely affects novel markers of cardiac risk. Hypertens Res. 2007;30(4):285-93. https://doi.org/10.1291/hypres.30.285
Dronjak S, Spasojevic N, Gavrilovic L, Varagic V. Effects of noradrenaline and serotonin reuptake inhibitors on pituitary-adrenocortical and sympatho-adrenomedullar system of adult rats. Neuro Endocrinol Lett. 2007;28(5):614-20.
Blardi P, de Lalla A, Auteri A, Iapichino S, Dell'Erba A, Castrogiovanni P. Plasma catecholamine levels after fluoxetine treatment in depressive patients. Neuropsychobiology. 2005;51(2):72-6. https://doi.org/10.1159/000084163
Toczek M, Malinowska B. Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci. 2018;204:20-45. https://doi.org/10.1016/j.lfs.2018.04.054
Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther. 2005;313(1):352-8. https://doi.org/10.1124/jpet.104.078980
Carnevali L, Vacondio F, Rossi S, Callegari S, Macchi E, Spadoni G, Bedini A, Rivara S, Mor M, Sgoifo A. Antidepressant-like activity and cardioprotective effects of fatty acid amide hydrolase inhibitor URB694 in socially stressed Wistar Kyoto rats. Eur Neuropsychopharmacol. 2015;25(11):2157-69. https://doi.org/10.1016/j.euroneuro.2015.07.015
Bedse G, Romano A, Tempesta B, Lavecchia MA, Pace L, Bellomo A, Duranti A, Micioni Di Bonaventura MV, Cifani C, Cassano T. Inhibition of anandamide hydrolysis enhances noradrenergic and GABAergic transmission in the prefrontal cortex and basolateral amygdala of rats subjected to acute swim stress. J Neurosci Res. 2015;93(5):777-87. https://doi.org/10.1002/jnr.23539
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Dronjak S. Inhibition of the fatty acid amide hydrolase changes behaviors and brain catecholamines in a sex-specific manner in rats exposed to chronic unpredictable stress. Physiol Behav. 2020;227:113174. https://doi.org/10.1016/j.physbeh.2020.113174
Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, Dasse O, Monaghan EP, Parrott JA, Putman D. Pharmacological profile of the selective FAAH inhibitor KDS‐4103 (URB597). CNS Drug Rev. 2006;12(1):21-38. https://doi.org/10.1111/j.1527-3458.2006.00021.x
Toczek M, Baranowska-Kuczko M, Grzęda E, Pędzińska-Betiuk A, Weresa J, Malinowska B. Age-specific influences of chronic administration of the fatty acid amide hydrolase inhibitor URB597 on cardiovascular parameters and organ hypertrophy in DOCA-salt hypertensive rats. Pharmacol Rep. 2016;68(2):363-9. https://doi.org/10.1016/j.pharep.2015.10.004
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. https://doi.org/10.1016/S0021-9258(19)52451-6
Grippo AJ, Moffitt JA, Johnson AK. Cardiovascular alterations and autonomic imbalance in an experimental model of depression. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1333-R41. https://doi.org/10.1152/ajpregu.00614.2001
Shyu K, Kuan P, Chang M, Wang B, Huang F. Effects of norepinephrine on apoptosis in rat neonatal cardiomyocytes. J Formos Med Assoc. 2000;99(5):412-8.
Ferizovic H, Spasojevic N, Puskas N, Stefanovic B, Jankovic M, Djelic N, Dronjak S. URB597 attenuates stress-induced ventricular structural remodeling by modulating cytokines, NF-κB, and JAK2/STAT3 pathways in female and male rats. Can J Physiol Pharmacol. 2023;101(8):400-12. https://doi.org/10.1139/cjpp-2022-0535
Carlsson M, Carlsson A. Effects of mild stress on adrenal and heart catecholamines in male and female rats. J Neural Transm. 1989;77:217-26. https://doi.org/10.1007/BF01248934
Lee J, Harley VR. The male fight‐flight response: A result of SRY regulation of catecholamines? Bioessays. 2012;34(6):454-7. https://doi.org/10.1002/bies.201100159
Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev. 2009;89(2):535-606. https://doi.org/10.1152/physrev.00042.2006
Takechi S, Nomura A, Shimono H, Katoh K, Kakinoki S, Jin E-Z, Akutsu M, Kitabatake A. Recovery of cardiac norepinephrine concentration and tyrosine hydroxylase activity by the central α2-adrenoceptor agonist guanabenz in rats with aortic constriction. J Cardiovasc Pharmacol. 1999;33(3):409-13. https://doi.org/10.1097/00005344-199903000-00010
Kreusser MM, Lehmann LH, Haass M, Buss SJ, Katus HA, Lossnitzer D. Depletion of cardiac catecholamine stores impairs cardiac norepinephrine re-uptake by downregulation of the norepinephrine transporter. PLoS One. 2017;12(3):e0172070. https://doi.org/10.1371/journal.pone.0172070
Shanks J, Manou-Stathopoulou S, Lu C-J, Li D, Paterson DJ, Herring N. Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2013;305(7):H980-6. https://doi.org/10.1152/ajpheart.00255.2013
Villeneuve C, Guilbeau-Frugier C, Sicard P, Lairez O, Ordener C, Duparc T, De Paulis D, Couderc B, Spreux-Varoquaux O, Tortosa F. p53-PGC-1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal. 2013;18(1):5-18. https://doi.org/10.1089/ars.2011.4373
Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011;1813(7):1323-32. https://doi.org/10.1016/j.bbamcr.2010.09.010
Datta C, Bhattacharjee A. Role of monoamine oxidase A (MAO-A) in cardiac aging. J Cardiol Cardiovasc Sci. 2020;4(2). https://doi.org/10.29245/2578-3025/2020/2.1189
Manni ME, Rigacci S, Borchi E, Bargelli V, Miceli C, Giordano C, Raimondi L, Nediani C. Monoamine oxidase is overactivated in left and right ventricles from ischemic hearts: an intriguing therapeutic target. Oxid Med Cell Longev. 2016;2016(1):4375418. https://doi.org/10.1155/2016/4375418
Godlewski G, Alapafuja SO, Bátkai S, Nikas SP, Cinar R, Offertáler L, Osei-Hyiaman D, Liu J, Mukhopadhyay B, Harvey-White J. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. Chem Biol. 2010;17(11):1256-66. https://doi.org/10.1016/j.chembiol.2010.08.013
Łupiński S, Schlicker E, Pądzińska-Betiuk A, Malinowska B. Acute myocardial ischemia enhances the vanilloid TRPV1 and serotonin 5-HT3 receptor-mediated Bezold-Jarisch reflex in rats. Pharmacol Rep. 2011;63(6):1450-9. https://doi.org/10.1016/S1734-1140(11)70709-5
Rudź R, Schlicker E, Baranowska U, Marciniak J, Karabowicz P, Malinowska B. Acute myocardial infarction inhibits the neurogenic tachycardic and vasopressor response in rats via presynaptic cannabinoid type 1 receptor. J Pharmacol Exp Ther. 2012;343(1):198-205. https://doi.org/10.1124/jpet.112.196816
Mazor M, Dvilansky A, Aharon M, Lazarovitz Z, Nathan I. Effect of cannabinoids on the activity of monoamine oxidase in normal human platelets. Arch Int de Physiol Biochim. 1982;90(1):15-20. https://doi.org/10.3109/13813458209082649
Ribeiro R, Wen J, Li S, Zhang Y. Involvement of ERK1/2, cPLA2 and NF-κB in microglia suppression by cannabinoid receptor agonists and antagonists. Prostaglandins Other Lipid Mediat. 2013;100:1-14. https://doi.org/10.1016/j.prostaglandins.2012.11.003
Fattore L, Fratta W. How important are sex differences in cannabinoid action? Br J Pharmacol. 2010;160(3):544-8. https://doi.org/10.1111/j.1476-5381.2010.00776.x
Tabatadze N, Huang G, May RM, Jain A, Woolley CS. Sex differences in molecular signaling at inhibitory synapses in the hippocampus. J Neurosci. 2015;35(32):11252-65. https://doi.org/10.1523/JNEUROSCI.1067-15.2015
Zer‐Aviv TM, Akirav I. Sex differences in hippocampal response to endocannabinoids after exposure to severe stress. Hippocampus. 2016;26(7):947-57. https://doi.org/10.1002/hipo.22577
留言 (0)