Modulation of Redox Metabolism, CD147, and CD47 Expression with the Maturation of Hematopoietic Stem Cells in Bone Marrow

Orkin SH, Li Z (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644

Article  CAS  PubMed  Google Scholar 

Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J et al (2006) Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 1:2979–2987

Article  CAS  PubMed  Google Scholar 

Choi K, Kennedy M, Kazarov A, Papadimitriou JC et al (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732

Article  CAS  PubMed  Google Scholar 

Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

Article  CAS  PubMed  Google Scholar 

Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

Article  PubMed  PubMed Central  Google Scholar 

Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193–197

Article  CAS  PubMed  Google Scholar 

Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng H, Zheng Z, Cheng T (2020) New paradigms on hematopoietic stem cell differentiation. Protein Cell 11(1):34–44

Article  PubMed  Google Scholar 

Miyawaki K, Iwasaki H, Jiromaru T, Kusumoto H, Yurino A, Sugio T, Akashi K (2017) Identification of unipotent megakaryocyte progenitors in human hematopoiesis Blood. J Am Soc Hematol 129(25):3332–3343

CAS  Google Scholar 

De Grandis M, Lhoumeau AC, Mancini SJ, Aurrand-Lions M (2016) Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment. Cell Mol Life Sci 73:687–703

Article  PubMed  Google Scholar 

Perlin JR, Sporrij A, Zon LI (2017) Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med 95:809–819

Article  CAS  PubMed  Google Scholar 

Bhardwaj N, Saxena RK (2014) Elimination of young erythrocytes from blood circulation and altered erythropoietic patterns during paraquat induced anemic phase in mice. PLoS ONE 9(6):e99364

Article  PubMed  Google Scholar 

Bhardwaj N, Saxena RK (2015) Selective loss of younger erythrocytes from blood circulation and changes in erythropoietic patterns in bone marrow and spleen in mouse anemia induced by poly-dispersed single-walled carbon nanotubes. Nanotoxicology 9(8):1032–1040

Article  CAS  PubMed  Google Scholar 

Bhardwaj N, Singh A, Chandra H, Gupta KK (2022) Paraquat treatment modulated the stress erythropoiesis response in bone marrow and liver of the splenectomized mice. Chem Biol Lett 9(2):306–306

CAS  Google Scholar 

Bhardwaj N, Chauhan P, Chandra H, Singh A, Gupta NJ (2023) Polydispersed acid-functionalized single-walled carbon nanotubes induced the integrin-associated protein (CD47) and Basigin (CD147) expression and modulated the antioxidant gene expression in erythroid cells in mice. BioNanoScience 13(2):695–703

Article  Google Scholar 

Bhardwaj N, Singh A (2018) Paraquat treatment modulates integrin associated protein (CD47) and basigin (CD147) expression and mitochondrial potential on erythroid cells in mice. Environ Toxicol Pharmacol 58:37–44

Article  CAS  PubMed  Google Scholar 

Bhardwaj N, Saxena RK (2013) Heterogeneity of reticulocyte population in mouse peripheral blood. Curr Sci 105:1611–1614

Google Scholar 

Bhardwaj N, Singh A (2020) Splenectomy modulates the erythrocyte turnover and Basigin (CD147) expression in mice. Indian J Hematol Blood Transfus 36(4):711–718

Article  PubMed  Google Scholar 

Chauhan P, Bhardwaj N, Rajaura S, Gupta N (2024) Selective elimination of younger erythrocytes in blood circulation and associated molecular changes in benzo (a) pyrene induced mouse model of lung cancer. Toxicol Res 13(1):tfad115

Article  Google Scholar 

Bhardwaj N, Kumar A, Gupta NJ (2023) Altered dynamics of mitochondria and reactive oxygen species in the erythrocytes of migrating red-headed buntings. Front Physiol 14:1111490

Article  PubMed  PubMed Central  Google Scholar 

Kumar A, Bhardwaj N, Rajaura S, Afzal M, Gupta NJ (2024) Inter-organ differences in redox imbalance and apoptosis depict metabolic resilience in migratory redheaded buntings. Sci Rep 14(1):20184

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajaura S, Bhardwaj N, Singh A, Babu R, Gupta N, Ahmed MZ (2024) Bisphenol A-induced oxidative stress increases the production of ovarian cancer stem cells in mice. Reprod Toxicol 130:108724. https://doi.org/10.1016/j.reprotox.2024.108724

Article  CAS  PubMed  Google Scholar 

Liu L, Wei Y, Xie N, Cai H, Lin Y (2024) Mitochondria-targeted reactive oxygen species blockor SS-31 blocks hepatic stellate cell activation and alleviates hepatic fibrosis by regulating NLRP3 inflammasomes. Cell Mol Biol (Noisy-le-grand) 70(2):183–188

Article  PubMed  Google Scholar 

Tan DQ, Suda T (2018) Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxid Redox Signal 29(2):149–168

Article  CAS  PubMed  Google Scholar 

Kalashnikova MV, Polyakova NS, Belyavsky AV (2023) Regulation of metabolism and the role of redox factors in the energy control of quiescence and proliferation of hematopoietic cells. Mol Biol 57(6):1165–1175

Article  CAS  Google Scholar 

Ponka P, Koury MJ, Sheftel AD (2013) Erythropoiesis, hemoglobin synthesis, and erythroid mitochondrial iron homeostasis. Handb Porphyr Sci: Erythrop, Heme, Appl Biomed 27:41–84

Article  Google Scholar 

Mailloux RJ (2020) An update on mitochondrial reactive oxygen species production. Antioxidants 9(6):472

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filippi MD (2021) Hematopoietic stem cell (HSC) divisional memory: the journey of mitochondrial metabolism through HSC division. Exp Hematol 96:27–34

Article  CAS  PubMed  Google Scholar 

Morganti C, Ito K (2021) Mitochondrial contributions to hematopoietic stem cell aging. Int J Mol Sci 22(20):11117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zandstra PW, Lauffenburger DA, Eaves CJ (2000) A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis Blood. J Am Soc Hematol 96(4):1215–1222

CAS  Google Scholar 

Redondo-Muñoz J, García-Pardo A, Teixidó J (2019) Molecular players in hematologic tumor cell trafficking. Front Immunol 10:156

Article  PubMed  Google Scholar 

Grass GD, Toole BP (2016) How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 36(1):e00283

Article  Google Scholar 

Wilson MC, Meredith D, Fox JEM, Manoharan C, Davies AJ, Halestrap AP (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem 280(29):27213–27221

Article  CAS  PubMed  Google Scholar 

Spinello I, Saulle E, Quaranta MT, Pasquini L, Pelosi E, Castelli G, Labbaye C (2019) The small-molecule compound AC-73 targeting CD147 inhibits leukemic cell proliferation, induces autophagy and increases the chemotherapeutic sensitivity of acute myeloid leukemia cells. Haematologica 104(5):973

Article  CAS  PubMed 

留言 (0)

沒有登入
gif