Orkin SH, Li Z (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644
Article CAS PubMed Google Scholar
Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J et al (2006) Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 1:2979–2987
Article CAS PubMed Google Scholar
Choi K, Kennedy M, Kazarov A, Papadimitriou JC et al (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732
Article CAS PubMed Google Scholar
Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846
Article CAS PubMed Google Scholar
Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834
Article PubMed PubMed Central Google Scholar
Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193–197
Article CAS PubMed Google Scholar
Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285
Article CAS PubMed PubMed Central Google Scholar
Cheng H, Zheng Z, Cheng T (2020) New paradigms on hematopoietic stem cell differentiation. Protein Cell 11(1):34–44
Miyawaki K, Iwasaki H, Jiromaru T, Kusumoto H, Yurino A, Sugio T, Akashi K (2017) Identification of unipotent megakaryocyte progenitors in human hematopoiesis Blood. J Am Soc Hematol 129(25):3332–3343
De Grandis M, Lhoumeau AC, Mancini SJ, Aurrand-Lions M (2016) Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment. Cell Mol Life Sci 73:687–703
Perlin JR, Sporrij A, Zon LI (2017) Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med 95:809–819
Article CAS PubMed Google Scholar
Bhardwaj N, Saxena RK (2014) Elimination of young erythrocytes from blood circulation and altered erythropoietic patterns during paraquat induced anemic phase in mice. PLoS ONE 9(6):e99364
Bhardwaj N, Saxena RK (2015) Selective loss of younger erythrocytes from blood circulation and changes in erythropoietic patterns in bone marrow and spleen in mouse anemia induced by poly-dispersed single-walled carbon nanotubes. Nanotoxicology 9(8):1032–1040
Article CAS PubMed Google Scholar
Bhardwaj N, Singh A, Chandra H, Gupta KK (2022) Paraquat treatment modulated the stress erythropoiesis response in bone marrow and liver of the splenectomized mice. Chem Biol Lett 9(2):306–306
Bhardwaj N, Chauhan P, Chandra H, Singh A, Gupta NJ (2023) Polydispersed acid-functionalized single-walled carbon nanotubes induced the integrin-associated protein (CD47) and Basigin (CD147) expression and modulated the antioxidant gene expression in erythroid cells in mice. BioNanoScience 13(2):695–703
Bhardwaj N, Singh A (2018) Paraquat treatment modulates integrin associated protein (CD47) and basigin (CD147) expression and mitochondrial potential on erythroid cells in mice. Environ Toxicol Pharmacol 58:37–44
Article CAS PubMed Google Scholar
Bhardwaj N, Saxena RK (2013) Heterogeneity of reticulocyte population in mouse peripheral blood. Curr Sci 105:1611–1614
Bhardwaj N, Singh A (2020) Splenectomy modulates the erythrocyte turnover and Basigin (CD147) expression in mice. Indian J Hematol Blood Transfus 36(4):711–718
Chauhan P, Bhardwaj N, Rajaura S, Gupta N (2024) Selective elimination of younger erythrocytes in blood circulation and associated molecular changes in benzo (a) pyrene induced mouse model of lung cancer. Toxicol Res 13(1):tfad115
Bhardwaj N, Kumar A, Gupta NJ (2023) Altered dynamics of mitochondria and reactive oxygen species in the erythrocytes of migrating red-headed buntings. Front Physiol 14:1111490
Article PubMed PubMed Central Google Scholar
Kumar A, Bhardwaj N, Rajaura S, Afzal M, Gupta NJ (2024) Inter-organ differences in redox imbalance and apoptosis depict metabolic resilience in migratory redheaded buntings. Sci Rep 14(1):20184
Article CAS PubMed PubMed Central Google Scholar
Rajaura S, Bhardwaj N, Singh A, Babu R, Gupta N, Ahmed MZ (2024) Bisphenol A-induced oxidative stress increases the production of ovarian cancer stem cells in mice. Reprod Toxicol 130:108724. https://doi.org/10.1016/j.reprotox.2024.108724
Article CAS PubMed Google Scholar
Liu L, Wei Y, Xie N, Cai H, Lin Y (2024) Mitochondria-targeted reactive oxygen species blockor SS-31 blocks hepatic stellate cell activation and alleviates hepatic fibrosis by regulating NLRP3 inflammasomes. Cell Mol Biol (Noisy-le-grand) 70(2):183–188
Tan DQ, Suda T (2018) Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxid Redox Signal 29(2):149–168
Article CAS PubMed Google Scholar
Kalashnikova MV, Polyakova NS, Belyavsky AV (2023) Regulation of metabolism and the role of redox factors in the energy control of quiescence and proliferation of hematopoietic cells. Mol Biol 57(6):1165–1175
Ponka P, Koury MJ, Sheftel AD (2013) Erythropoiesis, hemoglobin synthesis, and erythroid mitochondrial iron homeostasis. Handb Porphyr Sci: Erythrop, Heme, Appl Biomed 27:41–84
Mailloux RJ (2020) An update on mitochondrial reactive oxygen species production. Antioxidants 9(6):472
Article CAS PubMed PubMed Central Google Scholar
Filippi MD (2021) Hematopoietic stem cell (HSC) divisional memory: the journey of mitochondrial metabolism through HSC division. Exp Hematol 96:27–34
Article CAS PubMed Google Scholar
Morganti C, Ito K (2021) Mitochondrial contributions to hematopoietic stem cell aging. Int J Mol Sci 22(20):11117
Article CAS PubMed PubMed Central Google Scholar
Zandstra PW, Lauffenburger DA, Eaves CJ (2000) A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis Blood. J Am Soc Hematol 96(4):1215–1222
Redondo-Muñoz J, García-Pardo A, Teixidó J (2019) Molecular players in hematologic tumor cell trafficking. Front Immunol 10:156
Grass GD, Toole BP (2016) How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 36(1):e00283
Wilson MC, Meredith D, Fox JEM, Manoharan C, Davies AJ, Halestrap AP (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem 280(29):27213–27221
Article CAS PubMed Google Scholar
Spinello I, Saulle E, Quaranta MT, Pasquini L, Pelosi E, Castelli G, Labbaye C (2019) The small-molecule compound AC-73 targeting CD147 inhibits leukemic cell proliferation, induces autophagy and increases the chemotherapeutic sensitivity of acute myeloid leukemia cells. Haematologica 104(5):973
留言 (0)