Abbas N, Shad SA, Razaq M (2012) Fitness cost, cross resistance and realized heritability of resistance to imidacloprid in Spodoptera litura (Lepidoptera: Noctuidae). Pestic Biochem Physiol 103:181–188. https://doi.org/10.1016/J.PESTBP.2012.05.001
Abbas N, Khan H, Shad SA (2015) Cross-resistance, stability, and fitness cost of resistance to imidacloprid in Musca domestica L., (Diptera: Muscidae). Parasitol Res 114:247–255. https://doi.org/10.1007/S00436-014-4186-0/TABLES/4
Akhtar ZR, Afzal A, Idrees A, Zia K, Qadir ZA, Ali S, Haq IU, Ghramh HA, Niaz Y, Tahir MB, Arshad M, Li J (2022) Lethal, sub-lethal and trans-generational effects of chlorantraniliprole on biological parameters, demographic traits, and fitness costs of Spodopterafrugiperda (Lepidoptera: Noctuidae). Insects 13(10):881. https://doi.org/10.3390/INSECTS13100881
Article PubMed PubMed Central Google Scholar
Andr A, Jeanguenat A (2013) The story of a new insecticidal chemistry class: the diamides. Pest Manag Sci 69:7–14. https://doi.org/10.1002/PS.3406
Banazeer A, Shad SA, Shahzad Afzal MB (2020) Laboratory induced bifenthrin resistance selection in Oxycarenus hyalinipennis (Costa) (Hemiptera: Lygaeidae): Stability, cross-resistance, dominance and effects on biological fitness. Crop Prot 132:105107. https://doi.org/10.1016/J.CROPRO.2020.105107
Boaventura D, Martin M, Pozzebon A, Mota-Sanchez D, Nauen R (2020) Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects 11(8):545. https://doi.org/10.3390/INSECTS11080545
Article PubMed PubMed Central Google Scholar
Bolzan A, Padovez FEO, Nascimento ARB, Kaiser IS, Lira EC, Amaral FSA, Kanno RH, Malaquias JB, Omoto C (2019) Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag Sci 75(10):2682–2689. https://doi.org/10.1002/PS.5376
Article CAS PubMed Google Scholar
Cao G, Han Z (2006) Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost. Pest Manag Sci 62:746–751. https://doi.org/10.1002/PS.1234
Article CAS PubMed Google Scholar
Cao G, Lu Q, Zhang L, Guo F, Liang G, Wu K, Wyckhuys KAG, Guo Y (2010) Toxicity of chlorantraniliprole to Cry1Ac-susceptible and resistant strains of Helicoverpa armigera. Pestic Biochem Physiol 98:99–103. https://doi.org/10.1016/J.PESTBP.2010.05.006
Cheema HK, Kang BK, Jindal V, Kaur S, Gupta VK (2020) Biochemical mechanisms and molecular analysis of fenvalerate resistant population of Spodoptera litura (Fabricius). Crop Prot 127:104951. https://doi.org/10.1016/J.CROPRO.2019.104951
Chen Q, Xiong L, Luo M, Wang J, Hu C, Zhang X, Yu S, Li Y, Sun D (2015) Synthesis, larvicidal activities and antifungal activities of novel chlorantraniliprole derivatives and their target in the ryanodine receptor. Mol 20(3):3854–3867. https://doi.org/10.3390/MOLECULES20033854
Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. https://doi.org/10.1146/ANNUREV.ENTO.52.110405.091440/CITE/REFWORKS
Article CAS PubMed Google Scholar
Fu X, Zhao X, Xie B, Ali A, Wu K (2015) Seasonal pattern of Spodoptera litura (Lepidoptera: Noctuidae) migration across the Bohai Strait in Northern China. J Econ Entomol 108(2):525–538. https://doi.org/10.1093/JEE/TOV019
Gassmann AJ, Carrière Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54:147–163. https://doi.org/10.1146/ANNUREV.ENTO.54.110807.090518/1
Article CAS PubMed Google Scholar
Han W, Zhang S, Shen F, Liu M, Ren C, Gao X (2012) Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 68(8):1184–1190. https://doi.org/10.1002/PS.3282
Article CAS PubMed Google Scholar
Hannig GT, Ziegler M, Paula GM (2009) Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Pest Manag Sci 65:969–974. https://doi.org/10.1002/PS.1781
Article CAS PubMed Google Scholar
He F, Sun S, Tan H, Sun X, Qin C, Ji S, Li X, Zhang J, Jiang X (2019) Chlorantraniliprole against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): from biochemical/physiological to demographic responses. Sci Reports 9:10328. https://doi.org/10.1038/s41598-019-46915-0
Higginson DM, Morin S, Nyboer ME, Biggs RW, Tabashnik BE, Carrière Y (2005) Evolutionary trade-offs of insect resistance to Bacillus thuringiensis crops: fitness cost affecting paternity. Evolution 59(4):915–920. https://doi.org/10.1111/J.0014-3820.2005.TB01765.X
Huang Q, Wang X, Yao X, Gong C, Shen L (2019) Effects of bistrifluron resistance on the biological traits of Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). Ecotoxicology 28:323–332. https://doi.org/10.1007/S10646-019-02024-2/FIGURES/4
Article CAS PubMed Google Scholar
Huang JM, Zhao YX, Sun H, Ni H, Liu C, Wang X, Gao CF, Wu SF (2021) Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides. Pestic Biochem Physiol 174:104831. https://doi.org/10.1016/J.PESTBP.2021.104831
Article CAS PubMed Google Scholar
Ijaz M, Shad SA (2022) Fitness costs in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae) associated with laboratory-selected resistance to imidacloprid. Crop Prot 160:106051. https://doi.org/10.1016/J.CROPRO.2022.106051
Islam SMN (2018) Systematics, ecology and plant associations of Australian species of the genus Metarhizium. Queensland Univ Technol. https://doi.org/10.5204/THESIS.EPRINTS.117674
Islam SMN, Chowdhury MZH, Mim MF et al (2023) 2023) Biocontrol potential of native isolates of Beauveria bassiana against cotton leafworm Spodoptera litura (Fabricius. Sci Reports 131(13):8331. https://doi.org/10.1038/s41598-023-35415-x
Janmaat AF, Myers JH (2005) The cost of resistance to Bacillus thuringiensis varies with the host plant of Trichoplusia ni. Proc R Soc B Biol Sci 272:1031–1038. https://doi.org/10.1098/rspb.2004.3040
Khalid I, Kamran M, Abubakar M, Khizar M, Shad SA (2023) Effect of autosomally inherited, incompletely dominant, and unstable spinosad resistance on physiology of Tribolium castaneum (Coleoptera: Tenebrionidae): Realized heritability and cross-resistance. J Stored Prod Res 100:102069. https://doi.org/10.1016/J.JSPR.2022.102069
Kliot A, Ghanim M (2012) Fitness costs associated with insecticide resistance. Pest Manag Sci 68:1431–1437. https://doi.org/10.1002/PS.3395
Article CAS PubMed Google Scholar
Konopka JK, Scott IM, McNeil JN (2012) Costs of insecticide resistance in Cydia pomonella (Lepidoptera: Tortricidae). J Econ Entomol 105:872–877. https://doi.org/10.1603/EC11342
Lahm GP, Stevenson TM, Selby TP, Freudenberger JH, Cordova D, Flexner L, Bellin CA, Dubas CM, Smith BK, Hughes KA, Hollingshaus JG, Clark CE, Benner EA (2007) Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg Med Chem Lett 17(22):6274–6279. https://doi.org/10.1016/J.BMCL.2007.09.012
Article CAS PubMed Google Scholar
Lai T, Su J (2011) Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Manag Sci 67:1468–1472. https://doi.org/10.1002/PS.2201
Article CAS PubMed Google Scholar
Lalouette L, Pottier MA, Wycke MA, Boitard C, Bozzolan F, Maria A, Demondion E, Chertemps T, Lucas P, Renault D, Maibeche M, Siaussat D (2016) Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect. Environ Sci Pollut Res 23:3073–3085. https://doi.org/10.1007/S11356-015-5923-3/FIGURES/7
留言 (0)