The unreliability of crackles: insights from a breath sound study using physicians and artificial intelligence

Aviles-Solis, J. C. et al. Prevalence and clinical associations of wheezes and crackles in the general population: the Tromsø study. BMC Pulm. Med. 19, 1–11 (2019).

Article  CAS  Google Scholar 

Sanchez, I. & Vizcaya, C. Tracheal and lung sounds repeatability in normal adults. Respir. Med. 97, 1257–1260 (2003).

Article  CAS  PubMed  Google Scholar 

Jacome, C. & Marques, A. Computerized respiratory sounds are a reliable marker in subjects with COPD. Respir. Care 60, 1264–1275 (2015).

Article  PubMed  Google Scholar 

Vyshedskiy, A., Ishikawa, S. & Murphy, R. L. Jr. Crackle pitch and rate do not vary significantly during a single automated-auscultation session in patients with pneumonia, congestive heart failure, or interstitial pulmonary fibrosis. Respir. Care 56, 806–817 (2011).

Article  PubMed  Google Scholar 

Kim, Y. et al. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci. Rep. 11, 17186 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hafke-Dys, H., Breborowicz, A., Kleka, P., Kocinski, J. & Biniakowski, A. The accuracy of lung auscultation in the practice of physicians and medical students. PLoS One 14, e0220606 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohadana, A., Azulai, H., Jarjoui, A., Kalak, G., & Izbicki, G. Influence of observer preferences and auscultatory skill on the choice of terms to describe lung sounds: a survey of staff physicians, residents and medical students, BMJ Open Respir. Res. 7, e000564 (2020).

Kim, Y. et al. The coming era of a new auscultation system for analyzing respiratory sounds. BMC Pulm. Med. 22, 119 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Arts, L., Lim, E. H. T., van de Ven, P. M., Heunks, L. & Tuinman, P. R. The diagnostic accuracy of lung auscultation in adult patients with acute pulmonary pathologies: a meta-analysis. Sci. Rep. 10, 7347 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverman, B. & Balk, M. Digital stethoscope-improved auscultation at the bedside. Am. J. Cardiol. 123, 984–985 (2019).

Article  PubMed  Google Scholar 

Kevat, A. C., Kalirajah, A. & Roseby, R. Digital stethoscopes compared to standard auscultation for detecting abnormal paediatric breath sounds. Eur. J. Pediatr. 176, 989–992 (2017).

Article  PubMed  Google Scholar 

Aviles-Solis, J. C., Storvoll, I., Vanbelle, S. & Melbye, H. The use of spectrograms improves the classification of wheezes and crackles in an educational setting. Sci. Rep. 10, 8461 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elphick, H. E. et al. Validity and reliability of acoustic analysis of respiratory sounds in infants. Arch. Dis. Child 89, 1059–1063 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palaniappan, R., Sundaraj, K. & Sundaraj, S. Artificial intelligence techniques used in respiratory sound analysis-a systematic review. Biomed. Tech. (Berl.) 59, 7–18 (2014).

Article  PubMed  Google Scholar 

Meslier, N., Charbonneau, G. & Racineux, J. L. Wheezes. Eur. Respir. J. 8, 1942–1948 (1995).

Article  CAS  PubMed  Google Scholar 

Faustino, P., Oliveira, J. & Coimbra, M. Crackle and wheeze detection in lung sound signals using convolutional neural networks. Annu Int Conf. IEEE Eng. Med Biol. Soc. 2021, 345–348 (2021).

PubMed  Google Scholar 

Sarkar, M., Madabhavi, I., Niranjan, N. & Dogra, M. Auscultation of the respiratory system. Ann. Thorac. Med 10, 158–168 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Fouzas, S., Anthracopoulos, M. B., & Bohadana, A. Clinical usefulness of breath sounds. In Breath Sounds: From Basic Science to Clinical Practice, 33–52 (Springer, 2018).

Song, W., Han, J. & Song, H. Contrastive embeddind learning method for respiratory sound classification. in ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1275–1279 (IEEE, 2021).

Acharya, J., & Basu, A. Deep neural network for respiratory sound classification in wearable devices enabled by patient specific model tuning. IEEE Trans. Biomed. Circuits Syst. 14, 535–544 (2020).

Kong, Q, et al. Panns: Large-scale pretrained audio neural networks for audio pattern recognition. IEEE Signal Process Syst. 28, 2880–2894 (2020).

Park, D. S. et al. SpecAugment: A simple data augmentation method for automatic speech recognition. In INTERSPEECH 2019. 2019.

Shimizu, R. et al. Balanced mini-batch training for imbalanced image data classification with neural network. In 2018 First International Conference on Artificial Intelligence for Industries (AI4I), 2018, pp. 27–30. IEEE.

Mehmood, M., Abu Grara, H. L., Stewart, J. S., & Khasawneh, F. A. Comparing the auscultatory accuracy of health care professionals using three different brands of stethoscopes on a simulator. Med. Devices (Auckl). 7, 273–281 (2014).

Gurung, A., Scrafford, C. G., Tielsch, J. M., Levine, O. S. & Checkley, W. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Respir. Med. 105, 1396–1403 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Prince, J. et al. Deep learning algorithms to detect murmurs associated with structural heart disease. J. Am. Heart Assoc. 12, e030377 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Mangione, S. & Nieman, L. Z. Pulmonary auscultatory skills during training in internal medicine and family practice. Am. J. Respir. Crit. Care Med. 159, 1119–1124 (1999).

Article  CAS  PubMed  Google Scholar 

Moriki, D. et al. Physicians’ ability to recognize adventitious lung sounds. Pediatr. Pulmonol. 58, 866–870 (2023).

Article  PubMed  Google Scholar 

Kiyokawa, H., Greenberg, M., Shirota, K. & Pasterkamp, H. Auditory detection of simulated crackles in breath sounds. Chest 119, 1886–1892 (2001).

Article  CAS  PubMed  Google Scholar 

Palaniappan, R., Sundaraj, K., & Lam, C. Reliable system for respiratory pathology classification from breath sound signals, in 2016 International Conference on System Reliability and Science (ICSRS), 152–156 (IEEE, 2016).

Chamberlain, D., Kodgule, R., Ganelin, D., Miglani, V., & Fletcher, R. R. Application of semi-supervised deep learning to lung sound analysis. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 804–807. (IEEE, 2016).

Emmanouilidou, D., Patil, K., West, J., & Elhilali, M. A multiresolution analysis for detection of abnormal lung sounds. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3139–3142 (IEEE, 2012).

Shanthakumari, G. & Priya, E. Interpretation of lung sounds using spectrogram-based statistical features. In International Conference on Futuristic Communication and Network Technologies, 815–823. (Springer, 2020).

Grønnesby, M., Solis, J. C. A., Holsbø, E., Melbye, H., & Bongo, L. A. Bongo, Feature extraction for machine learning based crackle detection in lung sounds from a health survey. 2017.

Serbes, G., Ulukaya, S., & Kahya, Y. P. An automated lung sound preprocessing and classification system based onspectral analysis methods. In Precision Medicine Powered by pHealth and Connected Health: ICBHI 2017, Thessaloniki, Greece, 18–21 November 2017, 45–49 (Springer, 2018).

Park, J. S. et al. A machine learning approach to the development and prospective evaluation of a pediatric lung sound classification model. Sci. Rep. 13, 1289 (2023).

Ye, P. et al. Regularity and mechanism of fake crackle noise in an electronic stethoscope. Front. Physiol. 13, 1079468 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Oliveira, A. & Marques, A. Respiratory sounds in healthy people: a systematic review. Respiratory Med. 108, 550–570 (2014).

Article  Google Scholar 

Aviles-Solis, J. C. et al. International perception of lung sounds: a comparison of classification across some European borders. BMJ Open Respiratory Res. 4, e000250 (2017).

Article  Google Scholar 

X. Li, G. A. Ng, & F. S. Schlindwein, transfer learning in heart sound classification using mel spectrogram. In 2022 Computing in Cardiology (CinC), vol. 498, 1–4. (IEEE, 2022).

Loyola-Gonzalez, O. Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view. IEEE Access. 7, 154096–154113 (2019).

留言 (0)

沒有登入
gif