Radiation dose to the eye of physicians during radio frequency catheter ablation: a small-scale study

Letsas KP, Korantzopoulos P, Filippatos GS, Mihas CC, Markou V, Gavrielatos G et al (2010) Uric acid elevation in atrial fibrillation. Hellenic J Cardiol 51:209–213

Google Scholar 

Aune D, Feng T, Schlesinger S, Janszky I, Norat T, Riboli E (2018) Diabetes mellitus, blood glucose and the risk of atrial fibrillation: a systematic review and meta-analysis of cohort studies. J Diabetes Complications 32:501–511

Article  Google Scholar 

Tanaka A, Takemoto M, Masumoto A, Kang H, Mito T, Kumeda H et al (2019) Radiofrequency catheter ablation of premature ventricular contractions from near the His-bundle. J Arrhythm 35:252–261

Article  Google Scholar 

Antoku Y, Takemoto M, Tanaka A, Mito T, Masumoto A, Ueno T et al (2020) Radiofrequency catheter ablation of premature ventricular contractions from the mitral annulus in patients without structural heart disease. Pacing Clin Electrophysiol 43:1258–1267

Article  Google Scholar 

Kumagai K, Sato T, Kurose Y, Sumiyoshi T, Hasegawa K, Sekiguchi Y et al (2022) Predictors of recurrence of atrial tachyarrhythmias after pulmonary vein isolation by functional and structural mapping of nonparoxysmal atrial fibrillation. J Arrhythm 38:86–96

Article  Google Scholar 

Okubo K, Frontera A, Bisceglia C, Paglino G, Radinovic A, Foppoli L et al (2019) Grid mapping catheter for ventricular tachycardia ablation. Circ Arrhythm Electrophysiol 12:e007500

Article  Google Scholar 

Kato M, Chida K, Ishida T, Sasaki F, Toyoshima H, Oosaka H et al (2019) Occupational radiation exposure dose of the eye in department of cardiac arrhythmia physician. Radiat Prot Dosimetry 187:361–368

Article  Google Scholar 

Cha MJ, Jo SJ, Cho Y, Choi EK, Oh S (2016) Patient characteristics and the incidence of radiation-induced dermatitis following radiofrequency catheter ablation. Korean Circ J 46:646–653

Article  Google Scholar 

Chida K, Kato M, Kagaya Y, Zuguchi M, Saito H, Ishibashi T et al (2010) Radiation dose and radiation protection for patients and physicians during interventional procedure. J Radiat Res 51:97–105

Article  Google Scholar 

Kato M, Chida K, Nakamura M, Toyoshima H, Terata K, Abe Y (2019) New real-time patient radiation dosimeter for use in radiofrequency catheter ablation. J Radiat Res 60:215–220

Article  Google Scholar 

Christopoulos G, Papayannis AC, Alomar M, Kotsia A, Michael TT, Rangan BV et al (2014) Effect of a real-time radiation monitoring device on operator radiation exposure during cardiac catheterization: the radiation reduction during cardiac catheterization using real-time monitoring study. Circ Cardiovasc Interv 7:744–750

Article  Google Scholar 

Hasegawa K, Umemoto N, Inoue S, Iio Y, Shibata N, Mizutani T et al (2020) Digital zoom is a useful, simple, and cost-effective method of reducing radiation exposure in percutaneous coronary intervention. Cardiovasc Interv Ther 35:353–360

Article  Google Scholar 

Giaccardi M, Del Rosso A, Guarnaccia V, Ballo P, Mascia G, Chiodi L et al (2016) Near-zero X-ray in arrhythmia ablation using a 3-dimensional electroanatomic mapping system: a multicenter experience. Heart Rhythm 13:150–156

Article  Google Scholar 

Zhou Y, Jiang H, Hou X et al. (2018) [Ablation of paroxysmal supraventricular tachycardia guided by Carto Univu electroanatomic mapping system]. Zou J Zhong Nan Da Xue Xue Bao Yi Xue Ban 43:604–609.

Google Scholar 

Ishibashi T, Masuda T, Kato M and others (2022) Nationwide survey of radiation exposure for radiofrequency catheter ablation for pulmonary vein isolation and nonpulmonary vein isolation in Japan. Radiat Prot Dosimetry 198:16–22

Article  Google Scholar 

See J, Amora JL, Lee S and others (2016) Non-fluoroscopic navigation systems for radiofrequency catheter ablation for supraventricular tachycardia reduce ionising radiation exposure. Singapore Med J 57:390–395

Article  Google Scholar 

Pellegrino PL, Brunetti ND, Gravina D, Sacchetta D, De Sanctis V, Panigada S et al (2013) Nonfluoroscopic mapping reduces radiation exposure in ablation of atrial fibrillation. J Cardiovasc Med (Hagerstown) 14:528–533

Article  Google Scholar 

Valderrabano M, Greenberg S, Razavi H, More R, Ryu K, Heist EK (2014) 3D cardiovascular navigation system: accuracy and reduction in radiation exposure in left ventricular lead implant. J Cardiovasc Electrophysiol 25:87–93

Article  Google Scholar 

Akbulak RO, Schaffer B, Jularic M, Moser J, Schreiber D, Salzbrunn T et al (2015) Reduction of radiation exposure in atrial fibrillation ablation using a new image integration module: a prospective randomized trial in patients undergoing pulmonary vein isolation. J Cardiovasc Electrophysiol 26:747–753

Article  Google Scholar 

Thibault B, Macle L, Mondesert B, Dubuc M, Shohoudi A, Dyrda K et al (2018) Reducing radiation exposure during procedures performed in the electrophysiology laboratory. J Cardiovasc Electrophysiol 29:308–315

Article  Google Scholar 

Miwa Y, Ueda A, Komeda M, Takeuchi S, Nagaoka M, Momose Y et al (2019) Reducing radiation exposure during atrial fibrillation ablation using lectures to promote awareness. Open Heart 6:e000982

Article  Google Scholar 

Authors on behalf of I, Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41:1–322

Recommendations of the International Commission on Radiological Protection (1991) Ann ICRP 21:1–201

Article  Google Scholar 

Haga Y, Chida K, Kaga Y, Sota M, Meguro T, Zuguchi M (2017) Occupational eye dose in interventional cardiology procedures. Sci Rep 7:569

Article  Google Scholar 

Martin CJ, Magee JS (2013) Assessment of eye and body dose for interventional radiologists, cardiologists, and other interventional staff. J Radiol Prot 33:445–460

Article  CAS  Google Scholar 

Koukorava C, Farah J, Struelens L, Clairand I, Donadille L, Vanhavere F et al (2014) Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses. J Radiol Prot 34:509–528

Article  CAS  Google Scholar 

The 2007 Recommendations of the International Commission on Radiological Protection (2007) ICRP publication 103. Ann ICRP 37:1–332

Chida K, Kaga Y, Haga Y, Kataoka N, Kumasaka E, Meguro T et al (2013) Occupational dose in interventional radiology procedures. AJR Am J Roentgenol 200:138–141

Article  Google Scholar 

Kato M, Chida K, Ishida T, Toyoshima H, Yoshida Y, Yoshioka S et al (2019) Occupational radiation exposure of the eye in neurovascular interventional physician. Radiat Prot Dosimetry 185:151–156

Article  CAS  Google Scholar 

Morishima Y, Chida K, Meguro T, Hirota M, Chiba H, Fukuda H (2022) Lens equivalent dose of staff during endoscopic retrograde cholangiopancreatography: dose comparison using two types of dosemeters. Radiat Prot Dosimetry. https://doi.org/10.1093/rpd/ncac160

Article  Google Scholar 

Inaba Y, Hitachi S, Watanuki M, Chida K (2022) Radiation eye dose for physicians in CT fluoroscopy-guided biopsy. Tomography 8:438–446

Article  Google Scholar 

Haga Y, Chida K, Kimura Y, Yamanda S, Sota M, Abe M et al (2020) Radiation eye dose to medical staff during respiratory endoscopy under X-ray fluoroscopy. J Radiat Res 61:691–696

Article  CAS  Google Scholar 

Ishii H, Haga Y, Sota M, Inaba Y, Chida K (2019) Performance of the DOSIRIS eye lens dosimeter. J Radiol Prot 39:N19–N26

Article  CAS  Google Scholar 

Marcantonini M, Chiappiniello A, Beneventi S, Reggioli V, Dipilato AC, Fulcheri CPL et al (2019) Evaluation of equivalent dose to eye lens through dose equivalent Hp(3). Phys Med 64:29–32

Article  Google Scholar 

Alnaaimi M, Alduaij M, Shenawy F and others (2021) Assessment of eye doses to staff involved in interventional cardiology procedures in Kuwait. Radiat Environ Biophys 60:639–645

Article  Google Scholar 

Endo M, Haga Y, Sota M and others (2021) Evaluation of novel X-ray protective eyewear in reducing the eye dose to interventional radiology physicians. J Radiat Res 62:414–419

Article  CAS  Google Scholar 

Krisanachinda A, Srimahachota S, Matsubara K (2017) The current status of eye lens dose measurement in interventional cardiology personnel in Thailand. Radiol Phys Technol 10:142–147

Article  Google Scholar 

Morishima Y, Chida K, Katahira Y, Seto H, Chiba H, Tabayashi K (2016) Need for radiation safety education for interventional cardiology staff, especially nurses. Acta Cardiol 71:151–155

Article  Google Scholar 

Inaba Y, Chida K, Kobayashi R, Kaga Y, Zuguchi M (2014) Fundamental study of a real-time occupational dosimetry system for interventional radiology staff. J Radiol Prot 34:N65-71

Article  Google Scholar 

Chida K, Morishima Y, Inaba Y, Taura M, Ebata A, Takeda K et al (2012) Physician-received scatter radiation with angiography systems used for interventional radiology: comparison among many X-ray systems. Radiat Prot Dosimetry 149:410–416

Article  CAS  Google Scholar 

Kato M, Chida K, Munehisa M, Sato T, Inaba Y, Suzuki M et al (2021) Non-lead protective aprons for the protection of interventional radiology physicians from radiation exposure in clinical settings: an initial study. Diagnostics(Basel) 11:1613. https://doi.org/10.3390/diagnostics11091613

Morishima Y, Chida K, Ito O (2022) New radioprotective device that can be used for fluoroscopic exam: possibility to contribute to staff exposure protection during VFSS. Dysphagia 37:1519–1524

Article  Google Scholar 

Morishima Y, Chida K, Katahira Y (2019) The effectiveness of additional lead-shielding drape and low pulse rate fluoroscopy in protecting staff from scatter radiation during cardiac resynchronization therapy (CRT). Jpn J Radiol 37:95–101

Article  Google Scholar 

Chida K (2022) What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol Phys Technol 15:101–115

Article 

留言 (0)

沒有登入
gif